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A B S T R A C T

There is an increasing need for small scale information about the temporal shifting of the phenological crop
development for applications like fertilization, irrigation, crop and soil protection, weather index insurance,
yield prediction, crop classification or as bio-indicator of climate change. This application note introduces
PhenoWin, a tool to extract and visualize phenological windows for any given year from 1993 onward and user-
defined regions in Germany. Phenological windows represent successive start and end dates of development
stages for different main crops, which have been interpolated using the phenological model PHASE. PhenoWin
was implemented using R language and the R Shiny web framework. PhenoWin can be used as standalone
application or can be embedded in web pages. Both, the used phenological data sets and the PhenoWin source
code are available under open source license.

1. Introduction

Plant phenology describes annually and periodically reappearing
stages in growth and development of plants, represented by clearly
defined physiological events (Schmidt et al., 2014). In agriculture, the
knowledge about the spatio-temporal characteristics of crop phenology
is particularly important for applications such as timing of planting,
fertilization, irrigation, crop and soil protection, yield prediction and
weather index insurance (Bolton and Friedl, 2013; Chmielewski, 2003;
Filella et al., 1995; Möller et al., 2017), crop classification (Bargiel,
2017; Foerster et al., 2012; Gerstmann et al., 2018; Heupel et al., 2018;
Hu et al., 2019) or as bio-indicator of climate change and extreme
weather assessment (Menzel et al., 2008; Fitchett et al., 2015; Dalhaus
and Finger, 2016; Lüttger and Feike, 2018; Rezaei et al., Mar. 2018;
Dalhaus et al., 2018; Möller et al., 2019; Vroege et al., 2019).

The monitoring of phenological events at national and regional
scale by networks of volunteered observers has a long history and is
conducted in several parts of the word1 (Schwartz et al., 2003; Koch
et al., 2010). Although the resulting “Volunteered Phenological Ob-
servations” (VPOs) can be characterized by inconsistencies (Mehdipoor
et al., 2015, 2018), they provide punctual and accurate information
about specific phenological stages. Germany’s national meteorological
service DWD (Deutscher Wetterdienst) runs a phenological network of

yearly and immediate observers. About 1200 reporters observe and
record 160 phenological phases of wild and cultivated plants. The ob-
servations are captured according to a standardized guideline, undergo
an automatic quality assessment (Kaspar et al., 2014) and are available
under an open data policy (Kaspar et al., 2019).

Phenological observations represent local information of an un-
known scale-specific representativity (Möller and Volk, n.d.). Non-ob-
served locations can be considered as spatial gaps (Grassini et al.,
2015). They can be filled by applying spatial modelling techniques.
Two groups can be distinguished: 1. The increased availability of sa-
tellite-based spectral vegetation index times series has led to the de-
velopment of spatial modelling approaches characterizing the spatio-
temporal development of “Land Surface Phenology” (LSP; Zeng et al.,
2020). LSP metrics enable the detection of general annual vegetation
changes including the start, peak and end of the annual growth season
on regional or global scale. Limitations of LSP metrics are referred to
satellite image processing and scale issues (Helman, 2018). A particular
challenge lies in the relation of LPS metrics and physiological crop
growth stages, which can only be partially implemented (Gao et al.,
2017). 2. A more straightforward way is the application of regression
and geostatistical interpolation algorithms on observations considering
temporally environmental variables like elevation, slope or sunshine
duration (Jeanneret et al., 2010). In contrast to LSP metrics, its
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application is spatially restricted to the extent of phenological ob-
servations. An example is the PHASE model, which was developed in
order to provide historical spatial data sets of beginning growth stages
(= phases) for the total area of Germany and main crop types
(Gerstmann et al., 2016). As a result, the actual interpolated phase-
specific “Days of the Year” (DOY) and a corresponding spatial accuracy
metric is calculated, which expresses the pixel-specific standard error
(Möller et al., 2019).

In this article, we introduce the Shiny application PhenoWin,
which enables the visualization of successive crop-specific “Days of the
Year” (DOYs) of beginning phases derived from PHASE modelling. In
doing so, phenological windows can be extracted and compared for
arbitrary dates and user-defined areas of interest (AOI) in Germany like
administrative regions or agricultural objects such as field blocks or
parcels (Inan et al., 2010).

2. Methodological background

The programming language R (R Core Team, 2018) is one of the
most used open source software in data science (Lai et al., 2019). Since
R includes packages to handle spatial geodata (e.g., sf, velox, raster;
Hijmans and van Etten, 2012; Hunziker, 2017; Pebesma, 2018), spatial
and statistical analysis can be efficiently coupled and visualized (Bivand
et al., 2013). The application PhenoWin is mainly based on the Shiny
package (Chang et al., 2019), which can be used to create web appli-
cations in R language. The packages leaflet and ggplot2 (Cheng
et al., 2018; Wickham, 2016) are applied to manage interactive maps
and draw plots. The Shiny package also provides web widgets, which
allow to build links between web user interface (UI) and the server
within one R file. Cascading style sheets (CSS) are used to arrange the
widgets.

3. PhenoWin application

Fig. 1 shows the structure of the application, which can be divided
into three parts:

A A preprocessing routine converts all phenological raster datasets
to R objects, which makes them accessible to the Shiny server
(Subsection 3.1).
B The Shiny server contains functions to create, display or down-
load “Timeline Graps” or “Polar Graphs” of phenological windows
(Subsection 3.2).
C The Shiny user interface allows the user to define and change
areas of interest, crop types or time ranges (sec. Subsection 3.3) and
to plot graphs (Subsection 3.4).

Both, all used geodata sets of phenology and topography as well as the
PhenoWin source code are available under open source license. The R
source code, a subset of phenological data and the study’s test sites are
hosted and documented on GitHub2. The preprocessing routine can be
started by executing Extract_Geotif.R3. The actual PhenoWin ap-
plication is called by the file Graph_Pheno.R4.

3.1. Preprocessing

In Table 1, all considered raster data sets of beginning phenological
phases are listed. The interpolations are based on continuous and
complete yearly observations of six main crop types since 1993. At this
time, a new Germany-wide observation program was established
(Kaspar et al., 2014). The total data set includes 1188 raster

representing 44 phases and 27 years between 1993 and 2019. All raster
files with the EPSG projection 314675 follow the naming convention
DOY_[Crop ID]_[Phase ID]_[Year].tif and can be downloaded
with a geodata web interface6, which is updated regularly.

Applying functions of the raster and velox packages, crop-spe-
cific raster data sets are stacked (Hunziker, 2017). The resulting velox
objects enable fast raster operations and are saved according to the
naming convention DOY_[Crop ID].rds.

3.2. Shiny server

3.2.1. Spatial objects
The application’s interface enables the user to specify test sites. By

using two widgets, spatial objects can be defined and uploaded:

• The addDrawToolbar function from the leaflet.extra package
(Karambelkar and Schloerke, 2018) allows for the selection of points
or polygons directly on the interactive map.

• GeoJSON files of spatial polygons or points can be uploaded using
the fileInput function from the Shiny package (Chang et al.,
2019).

The uploaded spatial objects are converted to “simple feature” (sf)
objects by using the st_read function of the sf package (Pebesma,
2018). Since Leaflet requires WGS84 projection (EPSG code 4326),7

all inputs are reprojected accordingly.

3.2.2. Data processing
The selected sf objects are coupled with the input velox objects

containing the phenological raster data. In case of polygons, values of
the overlapping pixels are extracted. Spatial points are related to the
values of the pixels, in which they are situated.

3.3. Shiny user interface

The interface is divided into three parts. Its usage is explained based
on the example of a parcel situated in Central Germany and its corre-
sponding administrative district (Figs. 2 and 4):

1. The header window combines several configuration options, which
can be set or adjusted:

• The “Select Crop” drop-down list summarizes all crop types, for
which pre-processed phenological phases are available (see
Subsection 3.1) and phenological windows can be shown. The list
is based on the editable text file crops.csv8, which is part of the
PhenoWin GitHub project. The corresponding phases are defined
in the editable text file Phases.csv9. There, the phase-specific
color codes can also be supplemented or changed.

• The “Import GeoJSON” browser button activates a window to
import one or more test site points or polygons in GeoJSON
format in any projection.

• There are two interaction modes for test sites: the “Select” mode
allows their selection or deselection for plotting graphs, which is
indicated by transparent red and blue polygon colors. In the
“Delete” mode, test sites can be removed.

• After defining the crop type and importing, picking or drawing
and selecting one or more test site(s), clicking on the “Draw
Graph” button results in one or more output graph(s) (Subsection
3.4). By default, a “Timeline Graph” is plotted (Subsection 3.4.1).

2 https://github.com/EMRAgit/PhenoWin.
3 https://github.com/EMRAgit/PhenoWin/blob/master/Extract_Geotif.R.
4 https://github.com/EMRAgit/PhenoWin/blob/master/Graph_Pheno.R.

5 https://spatialreference.org/ref/epsg/31467/.
6 http://synops.julius-kuehn.de/phaenophase/.
7 https://spatialreference.org/ref/epsg/wgs-84/
8 https://github.com/EMRAgit/PhenoWin/blob/master/crops.csv.
9 https://github.com/EMRAgit/PhenoWin/blob/master/Phases.csv.
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Activating a checkbox, a “Polar Graph” is displayed (Subsection
3.4.2). The total height of the output graph can be varied by a
“Graph Height” slider. This option can be useful if two or more
test sites should be compared.

• The total test site-specific data sets and corresponding polygons or
points can be downloaded as text file (button “Download
Extracted Dataset”) and in GeoJSON format (button “Export
GeoJSON”), respectively.

• Pressing the “Download Phase Code” button provides a text file,
where the phase codes and their names as well as their associated
color codes are listed.

2. Maps are displayed by applying functions of the leaflet package
(Cheng et al., 2018) and contain standard functions like “zoom in”
or “zoom out”, and a search option based on the open street map
geocoder. The user can also add interactively test site points or
polygons within the map. The map background can be set by WMSs
of OpenStreetMap10, OpenTopoMap11 or Orthophotos from the ESRI
World Imagery12. Figs. 2a and 4a show the polygons of the district
of Mansfeld-Südharz (DEE0C) and the test parcel
(DESTLI0500950004), which were imported using the “Import
GeoJSON” option. The map’s background is defined by Open-
TopoMap WMS.

Fig. 1. PhenoWin structure.

Table 1
Interpolated crop-specific and Germany-wide phenological phases for the
period between 1993 and 2018. Crop codes: 201 – perennial grassland | 202 –
winter wheat | 204 – winter barley | 205 – winter rape | 208 – summer oats | 215
– corn | 253 – sugar beet. PHASE codes: 1 – beginning of turning green | 5 –
beginning of flowering | 10 – sowing | 12 – emergence | 13 – closed stand | 14 –
4th leaf unfolded | 15/67 – shooting/stem elongation | 17 – bud formation | 18/
66 – heading/tassel emergence | 19 – milk ripening | 20 – early dough ripening |
21 – yellow ripening | 22 – full ripening | 24 – harvest | 25 – 1st cut for hay | 26 –
1st cut for silage | 65 – tassel emergence.

PHASES 201 202 204 205 208 215 253

1 •
5 • •
10 • • • • • •
12 • • • • • •
13 •
14 •
15 • • •
17 •
18 • •
19 • • •
20 •
21 • • • •
22 •
24 • • • • • •
25 •
26 •
65 •
66 •
67 • •

10 https://www.openstreetmap.org.
11 https://opentopomap.org.
12 https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/

MapServer
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3. The time period selector allows to set temporal limits of the graph.
They are valid for all selected test sites. The temporal range of the
selector is related to the available (and expandable) phenological
data sets, which is the result of the preprocessing routine
(Subsection 3.1).

3.4. Output graphs

The output graphs result from applying functions of the ggplot2
package (Wickham, 2016). Each color corresponds to a phenological
phase. Green colors refer to vital phases like “emergence” or
“shooting”, and yellowish or orange colors indicate ripening phases.

3.4.1. Timeline graphs
Fig. 2 displays the PhenoWin User Interface. Two polygons of a

parcel (DESTLI0500950004) and its administrative district (DEE0C) are
imported and active. For both AOIs, the crop type “winter wheat” and
the period between 28th December 2010 and 3rd January 2012, two

timeline graphs are simultaneously derived. They display the chron-
ological sequence of beginning phenological phases on a timescale in
DOYs and dates.

The comparison of both timeline graphs reveal similar patterns.
However, the timeline graph of the administrative district (DEE0C) is
characterized by blurry phase transitions zones. This phenomenon re-
flects the heterogeneity of larger areas as well as observation or inter-
polation inaccuracies (see Gerstmann et al., 2016). As a consequence,
on DOYs in the temporal transitional range between two following
phases, the second phase (e.g., shooting) can occur earlier than the first
phase (e.g., emerging). This is illustrated in Fig. 3, where a red colored
AOI contains four pixels with an incorrect and nine pixels with a correct
chronological sequence. The correct and incorrect pixels are flagged by
the values “0” and “1”. The ratio of the number of correct pixels
(PNDOY

AOI ,0) and the total pixel number associated with the AOI (PNAOI)
results in a test site- and DOY-specific weighting factor WDOY (Eq. 1).
The example of Fig. 3 gives a weighting factor of = =W 9/13 0.69DOY .

=W
PN
PNDOY

DOY
AOI

AOI

,0

(1)

As illustrated in the grey legend of the output graph, the weighting
factor controls the opacity of the phase colors. This means for the actual
output graph, that such temporal windows of uncertain phase data are
visualized by overlapping phase colours of specific opacity degrees.
This is visible in the DEE0C graph, for instance, between the phases 18
(heading) and 21 (yellow ripeness; Fig. 2b).

3.4.2. Polar graphs
Fig. 4 shows a polar graph, where the start of the x axis is centered

at the midpoint of a plot frame on a 0:360° circle. In doing so, several
years of a test site and crop type can be compared regarding their inter-
annual differences of beginning phases, which enables the

Fig. 2. PhenoWin User Interface (a) and two timeline graphs (b) derived for a parcel (DESTLI0500950004) and its corresponding administrative district (DEE0C),
winter wheat and the period between 28th December 2010 and 3rd January 2012. The dotted lines indicate the end of a month or year.

Fig. 3. Illustration of a DOY-specific phase transition zone: the red line in-
dicates an area of interest (AOI), the red pixels are associated with the corre-
sponding polygon. The values 0 and 1 represent pixels with a correct and in-
correct chronological phase sequence.
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identification of uncommon plant development situations. Here, the
sequences of maize between 3rd January 2010 and 27th December
2019 are compared for the example parcel (DESTLI0500950004) and
the crop type maize. Accordingly, the early development of all phases in
2018 can be made visible, which was caused by high temperatures in
spring.

4. Conclusion and outlook

There is an increasing need for information about the temporal
shifting of the phenological crop development. This study is based on a
Germany-wide spatial gridded data base, which results from inter-
polated observations of beginning phases and represents the spatio-
temporal variability of phenological crop development of the entire
territory of Germany. In this context, the PhenoWin application aims at
the visualization of phenological windows for user-defined AOIs and
time periods. In doing so, different test sites and years can be compared
regarding its crop-specific phenological development.

PhenoWin can be used as standalone application or can be em-
bedded in web pages. The programming R language has been proven as
a suitable environment to combine efficiently spatial data set opera-
tions (packages velox and sf) with web-related visualization techni-
ques (Shiny package).

The PhenoWin application can be considered as a contribution to
make geodata, findable, accessible, interoperable and reusable (FAIR;
Evans et al., 2017). A further step in this context would be the in-
tegration of spatial accuracy information, which are available for all
used phenological data in this study (Gerstmann et al., 2016; Möller
et al., 2019). This could support the trustworthiness of the shown data
(Dalhaus and Finger, 2016; Lokers et al., 2016). Our presented ap-
proach of open data and source code can promote further developments
in the agricultural context, where dynamic phenological information
are required. This concerns, for example, extreme weather assessment
or soil erosion modelling (Möller et al., 2017; Möller et al., 2019). The
presented approach is also suitable to visualize other similar spatial
geodata like phenological metrics derived from remote sensing imagery
(Araya et al., 2018; Jönsson and Eklundh, 2004; Rodrigues et al., 2013).
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Fig. 4. PhenoWin User Interface (a) and polar graph (b) derived for a parcel (DESTLI0500950004), maize and the period between 1st January 2010 and 27th
December 2019.
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