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Abstract

Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices
(WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since
complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have
to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we
introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal
availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases
for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in
Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative
rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014.
Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on
raster data characterized by accuracy metrics. Raster data and W1Is, which fulfill data quality standards, can contribute to an
increased acceptance and farmers’ trust in WI products for crop yield modeling or weather index-based insurances (WIIs).

1 Introduction

Climate change has been recognized as a main driver in
the increasing occurrence of extreme weather (Field et al.
2012). Weather indices (WIs) are used to assess extreme
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weather conditions regarding its impact on crop yields
(Goodwin and Mahul 2004; Barnett and Mahul 2007; World
Bank 2011). WIs can be objectively measured during crop
growth, which is not necessarily the entire growing season.
Especially for yield formation, a specific phenological
phase is often of major importance (Pietola et al. 2011;
Castafneda-Vera et al. 2014; Vijaya Kumar et al. 2016). WIs
may be based on a single weather variable or a combination
of different weather variables. As such, different WIs are
described in literature for applications in different regions.
For instance, rainfall and drought indices have been applied
for wheat in Australia (Adeyinka et al. 2016), for cereals
in Morocco (Skees et al. 2001; Stoppa and Hess 2003), for
wheat and rice in Nepal (Poudel et al. 2016), for maize in
China (Chen et al. 2017), for cereals in West Africa (Okpara
et al. 2017), or for tomato in Spain (Castafieda-Vera et al.
2014). Other successfully applied WIs are heat indices for
wheat in India (Vijaya Kumar et al. 2016) and for cereals
in China (Zhang et al. 2017), and frost indices for wheat in
Finland (Pietola et al. 2011) and India (Vijaya Kumar et al.
2016).

Designing WIs is challenging, since complex crop-
climate relationships have to be considered (Liittger and
Feike 2018). As a consequence, corresponding input data
have to reflect the “temporal and spatial behavior of entities
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and local conditions” (Lokers et al. 2016). Especially in
the context of designing weather index-based insurances
(WIIs), data quality issues have been identified, which can
contribute to imperfect correlations of the experienced loss
and the corresponding WI. Apart from the fact that a specific
WI might be an inappropriate indicator for yield losses, such
poor correlations are often related to the spatio-temporal
quality of input data for designing WIs:

— Temporal inaccuracies can arise when a WI does not
match periods of crops’ sensitivity to specific (harmful)
weather conditions (Dalhaus et al. 2018). This problem
is often relevant when fixed start and end calendar dates
are used for the definition of reference periods (e.g.,
Turvey 2001, Pelka and Musshoff 2013). Therefore, a
promising strategy to tackle the temporal inaccuracy
problem is the consideration of phenological informa-
tion. In doing so, relevant time frames can be deter-
mined in a flexible manner reflecting the inter-annual
variability of relevant phenological phases of plant
development. For instance, Conradt et al. (2015) could
show in a WII design study in a Kazahk test site how
start and end dates of time frames can be defined by using
growing degree days (GDD). This approach assumes
strong relations between specific temperature sums and
phenological stages (Chuine et al. 2003). As shown in
Dalhaus et al. 2018, an alternative to GDD is the consid-
eration of phenological observations, which are moni-
tored in some countries by public institutions (Schwartz
2006).

— Spatial inaccuracies can be caused by differences
between site-specific weather or phenological condi-
tions and the point of measurement or observation
(Grassini et al. 2015). Thus, Dalhaus and Finger (2016)
suggest the usage of raster data for WI calculation.
Apart from advantages of such data for practical imple-
mentations, WIs could be calculated without the con-
sideration of spatial and temporal data gaps.

It becomes obvious that data of high spatio-temporal
quality data are crucial for designing WIs. In the WII con-
text, Leblois and Quiron (2013) emphasize that insurance
adoption and market acceptance are related to the farmers’
trust in the WI products as well as in the supplying insti-
tutions. Consequently, Dalhaus and Finger (2016) conclude
that ““a straightforward WI calculation [should be] based on
data provided by a trustworthy public institution”.

Institutionally, provided geodata have to meet quality
requirements of ISO standards and standards for geospatial
web services. ISO standards represent norms for carto-
graphic products that help geodata producers objectively
determine and describe the quality of geodata using statistic
metrics (Moller et al. 2013; Lokers et al. 2016). Quality met-
rics for geospatial web services also address the dynamic
aspect of geodata accuracy “enabling [them] to be used
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in geoprocessing procedures or in decision-making with
maximum reliability” (Cruz et al. 2012).

In this article, we present a WI design framework for
the total area of Germany, which enables the automatic and
operational derivation of standardized and dynamic WIs,
where all steps of geodata processing are reproducible and
the geodata products are characterized by spatial accuracy
metrics. The framework is explained on the example of
a simple cumulative rainfall WI, which is based on the
combination of phenological and precipitation raster data
sets (Rauthe et al. 2013; Gerstmann et al. 2016). The WI is
calculated for 16 German test sites, the period between 1994
and 2014 and the phenological phase shooting of winter
wheat due to its importance for harvest yield (Acevedo et al.
2002; Conradt et al. 2015). To highlight the potential of the
novel approach for WI standardization, we finally compare
the resulting spatial WI with a station-based W1 variant.

2 Materials and methodology
2.1 Test sites

For the analysis, 16 test sites are investigated located in the
German federal states North Rhine-Westphalia and Lower
Saxony (Fig. la). The climatic situation is classified as
warm, humid, and continental. In North Rhine-Westphalia,
the average annual temperature is 8.9 °C, and in Lower
Saxony 8.6 °C. The average annual precipitation is 875 mm
in North Rhine-Westphalia and 746 mm in Lower Saxony.
The test sites were selected as they are part of an analysis,
which investigates the suitability of precipitation-based
WIIs for risk reduction in regions with moderate climatic
conditions (Doms et al. 2017, 2018).

2.2 Workflow

In Fig. 2, the principle workflow for the standardized
and automatic WI calculation based on raster data (WIR)
is shown, which is implemented within the statistical
computing environment R (R Core Team 2017). The WI
design concept applied in this study is based on an index
variant introduced by (Dalhaus and Finger 2016), which
was designed as drought risk indicator for winter wheat
based on public and open data. Using the Germany-wide
raster data set REGNIE of daily precipitation (Sections 2.2.1
and 2.3.2), they calculated the precipitation sum Y (PRV:T)
for a specific year (Y) and reference unit (RU; for
example farms or test sites) during the phenological phase
shooting of winter wheat (Eq. 1). The phase’s start and
end dates DOY 48 were determined by using phenological
observations (Section 2.3.2), which were aggregated to
phenological regions (Ssymank 1994).
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Fig.1 The locations of test sites
(a) as well as of phenological
and meteorological stations (b)

I testsites

In this study, the phenological model PHASE has been
applied to generate phenological raster data sets. They can
be used for an automatic and dynamic determination of
phenological windows (DOY*-8; Section 2.2.2) and WI
derivation.

DOY®B

DOYA

A station-based W1 variant (W I5) has been derived using
the nearest stations of meteorological measurements and
phenological observations, for which temporally complete

Phenological
observations Phenological
DQY windows
point raster
DOY 48
DEM 1 x 1km?

E
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Precipitation -“E’ Precipitation
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Fig. 2 Principle workflow for the derivation of a phase-specific
and raster-based weather index WIR. RU — reference unit | DOY —
phenological day of the year | Ppoy — daily precipitation | DOY4-8
— DOYs of a phase’s start and end | DEM - digital elevation model

(b)

data sets were available (Section 2.3.3). The differences
and relations between precipitation sums based on station
data and raster data has been investigated by applying
a correlation analysis as well as linear and non-linear
regression (Section 2.2.3).

2.2.1 Daily precipitation and weather index
Germany-wide 1 x 1 km raster data sets of daily precipita-
tion (Section 2.3.2) have been derived by using the R func-

tion read_regnie, which is part of the package esmisc
(Szoecs 2016). The actual test site-specific calculation of

WEATHER INDEX (W1 })
P

DOY 4

| E —elevation | Y — year | PHASE — model for the interpolation of
beginning phenological phases | read_regnie — model for the import of
REGNIE data
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the raster-based WI has been realized by zonal statistics
functions of the R package raster (Hijmans 2016).

2.2.2 Phenological phases and windows

The PHASE model has been applied to interpolate
Germany-wide raster data of phase-specific DOYs (Gerst-
mann et al. 2016). The model is based on the growing degree
days concept, which relates phenological events of plants’
development to phase-specific accumulated heat sums. The
model approach is based on the assumption that temper-
ature is the main driving factor for intra-seasonal timing
of phenological events in temperate regions like Central
Europe (Chmielewski et al. 2004). During the modeling
procedure, an indicator temperature sum is determined by
analyzing the distribution of the temperature sums accumu-
lated between sowing and the date of phase observation.
Germany-wide temperatures result from the interpolation
of daily mean temperatures, which are provided by DWD
weather stations (Section 2.3.2). For each location, the day,
on which the accumulated temperature sum exceeds the
indicator temperature sum, is modeled and spatially inter-
polated using regression kriging (Hengl et al. 2007). In addi-
tion, the accuracy metric kriging standard deviation (o) is
calculated for each phenological interpolation result, which
represents the spatial standard error of estimation computed
for a kriged estimate (Hiemstra et al. 2009).

Following Moeller et al. (2017), the interpolation results
can be used for the definition of the phenological phase
shooting which represents the temporal window between
the beginning of the phases shooting (WW ') and heading
(WW!8). All interpolations consider digital elevation data
(Section 2.3.1).

2.2.3 Correlation analysis, linear and non-linear regression

Differences between WIs derived form station-based and
raster data have been analyzed by applying correlation and
regression functions:

— Using the basic function cor.test, the non-
parametric Spearman’s rank correlation results in the
coefficient p, which is an indicator for the similarity
between two sets of ranked variables (Davis 2002).

— Both a linear regression model and the non-linear Ran-
dom Forest model are included in the R package caret
(Kuhn et al. 2014). The function train formalizes
the training, pre-processing, tuning, and performance
assessment of a wide variety of spatial modeling tech-
niques. In order to avoid over-fitting, each model is
based on bootstrapped training samples (25 iterations).
The modeling performances are assessed by the metrics
root mean square error (RMSE) and coefficient of
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determination (R?) based on observed and predicted
values (Kuhn 2008; Kuhn and Johnson 2013).

Apart from statistical accuracy metrics, the modeling
results are evaluated according to their relationship to each
predictor. The resulting variable importance for the linear
regression model corresponds to the absolute value of the
t-statistic for each model parameter. For Random Forest
regression, the importance of each explaining variable is
derived from the percent increase in mean squared error
(M SE), which results from the permutation of out-of-bag
data for each variable. Finally, the variable importance
metrics are scaled between 0 and 100.

2.3 Data
2.3.1 SRTM DEM

The Shuttle Radar Topography Mission (SRTM!) resulted
in a public and open digital elevation model (DEM)
for almost the entire Earth except the polar regions.
It has a geometric resolution of ~ 30 x 30m, with
horizontal and vertical accuracies of about 20 and 16 m,
respectively (Rabus et al. 2003). A Germany-wide DEM
has been filtered (Lee 1980) to reduce signal noise and
then aggregated to 1 x 1 km raster size with a total number
of 358,320 pixels. The raster size roughly corresponds to
the positional inaccuracy of the phenological observations
(Section 2.3.2). Figure la shows the resulting DEM as
colored hill shade for the total area of Germany.

2.3.2 Phenological and meteorological data

In Germany, a phenological and meteorological monitoring
network is driven by the German Weather Service (DWD;
in German: Deutscher Wetterdienst). The phenological
network of yearly observers consists of approximately
1200 volunteers, which map the beginning of principle
phenological phases of the most frequently cultivated
crops according to standardized criteria since 1951 (Kaspar
et al. 2014). Each plant is observed on a different
number of stations, depending on the abundance and
agrometeorological relevance of the respective crop type.
The mapping results are reported at the end of the year
under review and are checked for plausibility. The positional
accuracy of the point data set is about 2 x 2km. The
reported crop types and corresponding phenological phases
are listed in Kaspar et al. (2014). In this study, the
beginning phases shooting and heading of winter wheat
are considered. Daily meteorological measurements (mean

ILink to USGS web portal EarthExplorer for downloading SRTM data:
https://earthexplorer.usgs.gov
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temperature) of approximately 500 stations were used,
which are also provided by the DWD. Both phenological
and meteorological data can be accessed via FTP.?

Furthermore, the DWD enables open access to daily
precipitation data, which are calculated using the specific
regionalization method REGNIE (Rauthe et al. 2013). Daily
precipitation data between 1931 and today measured at &
2000 weather stations irregularly distributed over Germany
are interpolated on a raster grid of 1 x 1 km. The REGNIE
procedure combines a multiple linear regression including
different influencing factors such as latitude and longitude
of a station and inverse distance weights. REGNIE data can
also be directly downloaded from the FTP server of the
DWD?. They are stored in a specific ASCII format, which
requires a transformation into a common raster format
(Section 2.2.1).

2.3.3 Distances between test sites and weather stations
or phenological observations

Table 1 lists the linear distances between the centroids of
the test sites as well as the nearest meteorological and
phenological stations, for which a complete temporal data
set between 1994 and 2014 is available. In total, data of
twelve weather stations are used, five located in North
Rhine-Westphalia and seven in Lower Saxony. Due to the
temporal discontinuity of the phenological observations,
only five stations are available providing data for the
complete observation period. Three stations are located
in North Rhine-Westphalia and two in Lower Saxony.
Since the stations are distributed irregularly (Fig. 1b),
the distances between test sites and weather stations or
phenological observations fluctuate between 2 and 26 km
and 0 and 90 km, respectively.

3 Results
3.1 Phenological patterns

Figure 3 shows the interpolation results of the beginning
phenological phases shooting and heading of winter wheat
in 2007 and 2013. These years are chosen because they
are an example for the inter-annual DOY variability
of phenological phases. Although the Germany-wide

2Link to the DWD climate data server for downloading phenolog-
ical and meteorological observations: ftp:/ftp-cdc.dwd.de/pub/CDC/
observations_germany

3Link to the DWD climate data server for downloading REGNIE data:
ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/daily/regnie

Table 1 Distances [km] between test sites and weather stations (DWS)
or phenological observations (D"S) as well Spearman correlation
coefficients (p) between test site-specific weather indices based on
station (W IS) or raster data (W I5)

TS pWs DPs (WIS, WIR)
1 11 11 0.85
2 5 11 0.86
3 10 18 0.87
4 12 27 0.90
5 8 32 0.22
6 2 15 0.39
7 13 90 0.90
8 13 30 0.45
9 5 18 0.51
10 21 29 0.28
11 21 0 0.37
12 21 14 0.34
13 26 5 0.36
14 23 0 0.71
15 11 0.83
16 20 0.87

phenological patterns are similar, the figure reveals that
the phases shooting and heading started much later in
2013 compared to 2007. With regard to spatio-temporal
differences, DOY patterns show similarities with earlier
dates of phase occurrence in favored regions especially in
the southwest, west as well as northeast of Germany and
delayed plant development in more mountainous regions.

Figure 4 summarizes all DOYs of both beginning
phenological phases between 1994 and 2014. The test
site-specific perspective in Fig. 4a illustrates that both
phases start usually earlier in North Rhine-Westphalia (test
sites 8 to 16). The later beginning of the two phases
in Lower Saxony (test sites 1 to 7) is related to the
increasing continental climatic influence and consecutive
lower average temperatures. The average DOY values show
a rather low variation between the test sites, while also the
magnitude of inter-annual variation is rather constant over
the sites. The year-specific perspective (Fig. 4b) reveals
sometimes large inter-annual differences in average DOYs,
e.g., 2007 vs. 2013, while also the inter-site variability can
vary strongly between different years, e.g., 1995 vs. 1996.

The raster data sets of the beginning phases can be
used to derive phenological windows for specific years
and test sites based on all interpolated phenological events.
This is shown in Fig. 5 on the example of test site 1 for
2007 and 2013. In doing so, test site-specific differences in
phenological timing can be illustrated.

@ Springer


ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany
ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany
ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/daily/regnie

M. Méller et al.

Fig.3 Predicted phenological
events (D OY) of the beginning
phenological phases shooting (a,
b) and heading (c, d) of winter
wheat in 2007 (a, ¢) and 2013
(b, d). The test site names are
shown Fig. 1b

3.2 Model inaccuracies

Each interpolated value of the beginning of a phenological
phase is related to a corresponding spatial data set of
the kriging standard deviation (c¥), which is shown in
Fig. 6 on the example of shooting and heading of winter
wheat in 2007 and 2013. Accordingly, oX values vary
over phases, sites, and years. Higher X values prevail
especially in some mountainous regions, e.g., the Alps in
the south, as well as in the north and northeast where both
the meteorological and phenological observation density is
less than in the remaining area of Germany (see Fig. 1b).
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The year- and test site-specific means of kriging standard
deviation (x(cX)) for the beginning phases shooting and
heading are displayed in Fig. 7. The x(cX) values for
the beginning phase shooting vary from 4.8 to 6.2 days
and for heading from 2.9 to 3.9 days (25th and 75th
percentiles).

The x(cX) variations of all test sites are comparable
(Fig. 7a). Similar to the strong year-to-year variation in the
absolute DOY values for the beginning phases (cf., Fig. 4b),
there is also a strong variation in the phase-specific model
inaccuracy over the years (Fig. 7b). Additionally, there
are other factors mainly linked to abiotic stress like water
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(b) Year-specific DOY-test site boxplots
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Fig. 5 Phenological phases of test site 1 for 2007 (a) and 2013 (b). Phase IDs: 12 - emerging - 15 - beginning of shooting - 18 - beginning
of heading - 19 - milk ripeness - 21 - yellow ripeness - 24 - harvest - AH - after harvest
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Fig.6 Kriging standard
deviation (o ¥) for the
interpolated beginning
phenological phases shooting
(a, b) and heading (c, d) of
winter wheat in 2007 (a, ¢) and
2013 (b, d). The test site names
are shown Fig. 1b

(a)

()

availability and soil moisture, soil properties, and fertiliza-
tion but also crop cultivar that affect the phenological devel-
opment of winter wheat (McMaster and Wilhelm 2003;
Nellis et al. 2009; Zhao et al. 2013; Rezaei et al. 2018). As
such, the model inaccuracies express differences in the year-
specific importance of the explaining variable temperature
sum (Section 2.2.2).

Both boxplot diagrams reveal that the beginning phase
shooting is characterized by higher x(cX) values com-
pared to the later phase heading. Following Gerstmann
et al. (2016), this behavior is correlated to the strong anthro-
pogenic influence, namely the timing of sowing, on early
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phenological development. Over the growing season, the
effects of differing sowing dates on phenology continuously
diminish due to the increasing cumulative temperature
effect, which is well captured by the PHASE model. Con-
sequently, the model inaccuracy, expressed by the phase-
specific % (o X) values, decreases.

3.3 Precipitation sums
The two Germany-wide REGNIE data sets for the DOY's

127 in 2007 and 145 in 2013 illustrate the temporal and
spatial dynamic of daily precipitation (Fig. 8a, b). While
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Fig.7 Test site- (a) and year-
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there was little rain in the North Rhine-Westphalian test
sites, almost all test sites in Lower Saxony were exposed
to significant precipitation. This is also true for test site 1,
for which both rain events occurred during the phenological
phase shooting. The graphs in Fig. 8c, d show phase-
specific daily precipitations as well as the corresponding
phase-specific precipitation sums (WIR). The DOYs 127
and 145 are highlighted. While the phase duration of 36
days is identical for both years, the phases’ starting and end
points differ considerably. In 2007, the period begins on the
DOY = 100 & 7 and ends on the DOY = 136 £ 5. In
2013, the starting and end points are DOY = 118 £ 5 and
DOY = 154 % 3 (see Section 3.1). The given uncertainties
result from the test-site-specific ¥ (o X) values. Accordingly,
2007 was characterized by higher uncertainties than 2013
(see Fig. 7b).

Figure 8c, d also reveals that the precipitation sums are
in 2013 (WIR = 188 mm) more than twice as high as in
2007 (WIR = 73 mm). Considering the uncertainties of
phases’ starting and end points, the summation results can
vary between 55 and 76 mm in 2007 as well as 187 and
203 mm in 2013.

Figure 9 presents the year- and test site-specific W IR
distributions for the phase shooting. Contrary to the entrance
of phenological phases shown in Fig. 4, no regional
differences are visible. However, all test sites show a high
variation of precipitation sums over the years (Fig. 9a).
The year-specific WIR distribution reveals strong inter-
annual changes of precipitation sums (Fig. 9b). Both
figures demonstrate that even regions with moderate climate
conditions are characterized by a high spatio-temporal
precipitation variability.
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Fig.8 Two REGNIE
precipitation raster (P) [mm] for
(a) DOY = 127 (May 7th 2007)
and (b) DOY = 145 (May 25th
2013) as well as phase-specific
precipitation and corresponding
WIs (P and W IR in mm) for test
site 1 in 2007 (c) and 2013 (d).
Test site 1 is marked black (a, b).
Both DOY's are emphasized by P
dashed black vertical lines (c, d) -
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3.4 Comparison of station-based and raster-based
Wis

Figure 10 summarizes test site-specific scatterplots of WIs
based on stations (W I5) and raster data (W I®) for the phase
shooting from 1994 to 2014. The plots indicate that some
test sites (e.g., 1 to 4 or 7) are characterized by strong
relations between WIR and WIS, Other test sites (e.g., 10
to 13) are weakly correlated. In Table 1, all corresponding
Spearman correlation coefficients (p(W1 S.WIR)) are
listed.

In the following, we tested if the differences between
both WI variants can be explained by the measured
distances between test site centroids and the locations of
meteorological stations (DW5) or phenological observations
(DPS; Table 1; see Section 2.3.3). In doing so, we set up a
linear (LR) and non-linear regression model (RF) according
to Eq. (2).

WIR ~ WIS+x (6 ) (WW'¥+x (0 ) (WW)+DWS4+DPS
(2)

Apart from both distances, we also considered test site-
specific means of the kriging standard deviations of the

beginning phases shooting (x (o) (WW!8)) and heading
(x (%) (WW!8)) as additional explaining variables.
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Table 2 summarizes the accuracy metrics R> and RM SE
as well as the variable importances of both models.
Accordingly, the variable WS is most important for both
models. However, the ranking of the remaining variables
differs. In the LR model, the differences between WIS and
WIR are also explained by the variable D%S. This is in
contrast to the RF model, where both X (o X) variables show
higher explanatory power compared to the variable DWS.
Comparing the accuracy metrics RMSE and R?, the RF
model clearly outperforms the LR model, which is shown
in Fig. 11. There, three scatter plots are overlaid. The black
colored scatterplot relates all original WIS and W IR values.
The red and blue scatterplots illustrate the predictive power
of the LR and RF model with consideration of the additional
explaining variables.

4 Discussion

4.1 Towards standardized geodata for designing
weather indices

The approach presented in this study can be considered as
a dynamic WI design framework, which we illustrated on
a simple precipitation index. The operational process chain
enables the dynamic and automatic definition of temporal
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Fig.9 Test site- (a) and
year-specific distributions (b) of
phase-specific WI (W IR) [in
mm] illustrated on the example
of the phase shooting during the
period between 1994 and 2014

Fig. 10 Test site-specific scatter
plots of phase-specific
precipitation sums based on
meteorological stations (W1 $)
and raster data (W IR) for the
phase shooting from 1994 to
2014
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Table 2 Variable importance and accuracy metrics for models based
on linear regression (LR) and random forest (RF; see Eq. (2) and

Fig. 11)

Variable Importance

LR RF
wis 100 100
(0 Xy (WwW!8) 6.64 44.18
(0 Xy (WwW1d) 7.24 39.51
DWS 37.28 19.06
DPS 0 0
Metric Accuracy

LR RF
RMSE 27.59 20.65
R? 0.33 0.63

windows of relevant development stages of main cultivated
crops in Germany. In doing so, interactions between extreme
weather conditions and specifically sensitive periods of
phenological development can be considered in WI design
(see Conradt et al. 2015, Dalhaus and Finger 2016, Dalhaus
et al. 2018). Within the temporal bounds, WI variants
(e.g., Luttger and Feike 2018, Goemann et al. 2015) can
be calculated for any year and test site in Germany by
using open public data provided by state authorities. This
means that seeking for suitable weather and phenological
stations next to fields or farms becomes superfluous for

o
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Fig. 11 Scatter plots of phase-specific precipitation sums based on
raster data (WIR) and weather stations or phenological observations
(WIS)as well as relations between W IR and weather indices predicted
via linear regression (W I'R) or non-linear Random Forest regression
(W IRF) according to Eq. (2) (see Table 2).
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WI calculation. In addition, the procedure fills spatial and
temporal gaps of phenological and meteorological station
data sets.

4.2 Wl standardization

As shown in Section 3.4, we detected significant discrep-
ancies between station- and raster-based WIs. The bias is
related to distances between the locations of test sites and
weather stations (DV®) or phenological observation points
(DPS). Since the distances vary unsystematically over space
and time, the quality of WI design approaches, building on
station-based or aggregated input data, cannot be assessed
due to unknown input data accuracies. We could also show
that WI differences can only insufficiently be explained
by DWS and DPS. Instead, we could show that the spatial
accuracy metric kriging standard deviation is suitable as
an important explaining variable for the non-linear relation
between raster- and station-based W1Is, which underlines the
unsystematic character of WI differences.

Against the background of spatio-temporal quality
requirements of geodata in agricultural applications (Mdller
et al. 2013; Grassini et al. 2015; Lokers et al. 2016;
Mourtzinis et al. 2017) and the increasing spatio-temporal
availability of climate data (Overpeck et al. 2011), we
propose that the derivation of WIs should follow standard
protocols including guidelines for an (automatic and
efficient) data processing as well as for the standardization
of error assessment procedures (Lokers et al. 2016). Since
WIs can be considered as (often) complex geodata derivates,
all steps of geodata processing should be reproducible and
the geodata input data and WIs should be characterized by
(spatial) accuracy metrics.

In this study, the derivation of Germany-wide phenolog-
ical raster data sets followed the idea of a standard protocol
since each interpolation result is characterized by the spatial
accuracy metric kriging standard deviation. This metric was
used for the accuracy assessment of phenological windows.
As shown on the example of test site 1, variations of phases’
starting and end points could be determined, which can con-
sequently affect WI results. This clearly demonstrates that
existing WI uncertainties are quantifiable. Here, test site 1
is characterized by WI uncertainties of 21 mm in 2007 and
16 mm in 2013 (see Section 3.3). If (spatial) accuracy met-
rics for the precipitation data set would be available, than
the W1 uncertainty could be completely described. By hav-
ing such information, possible sources of inaccuracies in W1
design are identifiable. In this study, this would concern, for
instance, the Germany-wide interpolation results of daily
temperatures, which are based on (only) 500 weather sta-
tions (see Section 2.3.2), but represent a key parameter for
the PHASE model (Section 2.2.2).
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4.3 Wl integrity and trustworthiness

The integrity and traceability of WIs and its geodata
components “is highly associated with trust and with having
confidence that the quality of data is sufficient to serve as
evidence base for critical decision-making (Lokers et al.
2016).” In the context of weather index-based insurances
for instance, quantified WI uncertainties, as exemplified
in our study, can support the assessment of its effect
on resulting payouts to farmers. On the other side, (e.g.,
institutional) WI providers would also benefit from geodata
integrity, since confidence intervals could be defined and
WI misinterpretation could be avoided (Lokers et al. 2016).

5 Conclusions and outlook

Germany is the second largest wheat producer in the Euro-
pean Union (FAOSTAT 2015). Liittger and Feike (2018) found
that correlations between winter wheat yields on county
level and climatic variables like heat and drought indices
vary strongly in terms of time and space. Thus, weather
indices (WIs) are needed, which are Germany-wide avail-
able and comparable as well as meet requirements regarding
standardization, data integrity and trustworthiness.

In this study, we introduced an approach to model
dynamic and reproducible weather indices (WIs) based on
Germany-wide and freely accessible raster data sets of both
daily precipitation and beginning phenological phases. The
major advantage of this approach is the possibility to design
a spatial and dynamic WI of certain accuracy as well as its
standardization.

The presented process chain can be considered as
blueprint for the calculation of other WIs based on publicly
available data. What remains for further studies is to
analyze the quality of the applied WI with regard to
its explanatory power for yield fluctuations. Against the
background of climate change, WIs gain in importance for
analyzing extreme weather conditions and the selection of
appropriate measures (Liittger and Feike 2018). Thus, the
further development and improvement of WI accuracies is
important not only for science and society but also farmers
and WI providers.

Germany can be characterized by a high availability
of public and trustworthy meteorological raster data
in different temporal resolutions. The interpolation of
phenological observations to Germany-wide raster data
with spatial accuracy metrics opens up the opportunity
of deriving trustworthy WIs. In this context, the Federal
Research Centre for Cultivated Plants (JKI) is going
to provide both Germany-wide raster data of beginning
phenological phases as well as corresponding WIs in the
near future (https://emra.julius-kuehn.de).
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