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A B S T R A C T

Monitoring of soils used for agriculture at frequent intervals is crucial to support decision making and refin-
ing soil policies especially in the context of climate change. Along with rainfall erosivity, soil coverage by
vegetation or crop residues is the most dynamic factor affecting soil erosion. Parcel-specific soil cover-
age information can be derived by satellite imagery with high geometric resolution. However, their usable
number is mostly, due to cloud cover, not representative for the phenological characteristics of vegetated
classes. To overcome temporal constraints, spatial and temporal fusion models, such as STARFM, are increas-
ingly applied to derive high-resolution time series of remotely sensed biophysical parameters, based on
fine spatial/coarse temporal resolution imagery, such as Landsat, and coarse spatial/fine temporal resolution
imagery, such as MODIS. In this context, the current study introduces an evaluation scheme for simulated
vegetation index time series which enables the assessment of their performance during multiple phenolog-
ical phases. The evaluation scheme is based on Germany-wide available spatial predictions of phenological
phases as well as RapidEye imagery and parcel-specific crop-type information. The evaluation results show
that the simulation accuracy is basically controlled by the temporal distance between MODIS and Landsat
base pairs, as well as the ability of the actual Landsat image to properly represent the phenological phase of
the Landsat image simulated by MODIS. In addition, we discuss the potential of simulated index times series
and corresponding phenological information for the dynamic (1) definition of temporal windows where
soils are potentially covered by no, sparse or dense vegetation or crop residues and (2) parameterization
of soil erosion models. The database thus obtained opens up new possibilities for an efficient and dynamic
erosion monitoring, which can support soil protection and hazard prevention.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Soil erosion by water on agricultural land is a global phenomenon
with important economic and environmental consequences, affecting
soil functioning, such as biogeochemical cycling, hydrology or crop
productivity (Govers et al., 2014). According to Panagos et al. (2015),
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(F. Gao), thorsten.dahms@uni-wuerzburg.de (T. Dahms),
michael.foerster@tu-berlin.de (M. Förster).

the replacement cost of soil lost to water erosion in Europe can be
estimated at about USD 20 billion per year.

The most important dynamic factors of soil erosion are rainfall
erosivity and soil coverage by vegetation or crop residues (Panagos
et al., 2014a). Since soil erosion is an event-based process and due
to the spatial and temporal variability of soil erosion (Prasuhn, 2011;
Evans, 2013; Aiello et al., 2015), it is a challenge to identify relevant
time periods (Li et al., 2014; Alexandridis et al., 2015) with a view to
predicting up-to-date and long-term “hotspots where serious erosion
is occurring” (Boardman, 2006). Monitoring of soils affected by erosion
events at frequent intervals is needed to obtain an understanding of
soil erosion processes regarding land use and climate change (Evans,
2013; Prasuhn, 2011). This is crucial to support decision making and

http://dx.doi.org/10.1016/j.catena.2016.11.016
0341-8162/© 2016 Elsevier B.V. All rights reserved.
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refining soil policies (Li et al., 2014; Robinson, 2015), especially in
the context of climate change (Routschek et al., 2014a,b). In Europe,
this concerns regulations relating to land management practices and
economic incentives, mostly in the frame of the European Union’s
Common Agricultural Policy (CAP; Volk et al., 2010). However, long-
term monitoring of erosion features is rare due to the short-term
character of low-budget research projects (Prasuhn, 2011) or due
to human resource constraints within state authorities (Feldwisch,
2015).

Fig. 1 illustrates the spatiotemporal dynamic of soil coverage,
which differs as a consequence of phenological development. The
photograph was taken on June 19th 2013, shortly after a high-
intensity rainfall event and shows two parcels with almost identical
topographic and soil conditions. While the left-hand parcel is fully
covered by winter wheat, the right-hand parcel is characterized by
emerging maize. Due to the lack of protective cover, slope-related
rills and accumulation zones of topsoil material are visible there.

During a typical vegetation cycle of crop types, the vegetation
coverage is relatively low during early phenological phases, but
increases until the maximum vitality of the plants is reached. Shortly
after harvest, crop residue coverage is high, but decreases due to
disintegration of the senescent plant components. Depending on the
type of soil cultivation, soil is either not covered or (partly) protected
by mulch cover.

The phenological development of crops and corresponding soil
coverage information can be monitored using multi-spectral satel-
lite imagery (de Araujo Barbosa et al., 2015). A frequently applied
approach is the building of statistical models between observed soil
coverages and specific multi-spectral indices (Gitelson, 2013), which
result from the ratio of at least two spectral bands (Gerstmann et
al., 2016b). Vegetation indices, calculated from the reflectance in
the spectral wavelength range between red (RED) and near-infrared
(NIR), are most sensitive to differences in fractional vegetation
coverage (FVC) due to the abrupt reflectance rise caused by the vege-
tation’s chlorophyll in NIR (Tucker, 1979). The normalized difference
vegetation index (NDVI; Rouse et al., 1974) is the most popular veg-
etation index and has been found to be accurate in predicting soil
coverage by green vegetation (Gitelson, 2013; Yang et al., 2013;
Vrieling et al., 2008; Vrieling et al., 2014; Prabhakara et al., 2015). NIR
and RED bands are also used for the detection of bare soils (BS; Cui et
al., 2014; Fox et al., 2004). The estimation of crop residue coverages
(CRC) is based on short wave infrared (SWIR) spectral information
that is approximately 2100 nm where cellulose and lignin show a
specific absorption feature (Zheng et al., 2014).

On the basis of remotely sensed and freely available imagery of
coarse spatial/fine temporal resolution, such as MODIS1 or MERIS2,
the time series of biophysical parameters enable a dynamic soil
erosion risk assessment, which considers seasonal, monthly or
almost weekly vegetation coverage variations on a regional or sub-
continental scale (e.g., Symeonakis and Drake, 2010; Panagos et al.,
2012; Guerra et al., 2014; Vrieling et al., 2014; Alexandridis et al.,
2015). The monitoring of parcel-specific soil coverage information
requires the operational availability of satellite imagery with fine
temporal and geometric resolution, as well as with a free data distri-
bution policy. Even though “there is currently a plethora of [optical]
sensors for mapping vegetation patterns . . . ” (Panagos et al., 2014b),
the number of usable fine resolution imagery is mostly, due to cloud
cover, not “representative for the phenological characteristics of veg-
etated classes” (Aiello et al., 2015). This especially concerns imagery
of the Landsat family, which, for decades has offered the only
data with a free distribution policy and fixed temporal repetition

1 Moderate Resolution Imaging Spectroradiometer (http://modis.gsfc.nasa.gov).
2 MEdium Resolution Imaging Spectrometer (https://earth.esa.int/web/guest/

missions/esa-operational-eo-missions/envisat/instruments/meris).

(Houborg et al., 2015). However, “the sparse and unbalanced distri-
bution of acquisition dates [... limits ...] its application in monitoring
of long-term phenology change” (Tian et al., 2013).

To overcome temporal constraints, spatial and temporal fusion
methods are increasingly applied to derive fine resolution time series
of remotely sensed biophysical parameters. They combine coarse
spatial/fine temporal and fine spatial/coarse temporal resolution
imagery (Meng et al., 2013; Gao et al., 2015; Chen et al., 2015; Zhang
et al., 2015). The spatial and temporal adaptive reflectance fusion
model (STARFM) is one of the most widely-used spatial and tem-
poral fusion algorithms (Gevaert and Garcia-Haro, 2015) and was
developed to blend Landsat and MODIS imagery to generate syn-
thetic Landsat surface reflectance data of fine spatial/fine temporal
resolution (Gao et al., 2006). Although the STARFM is particularly
considered suited to “capture reflectance changes caused by phenol-
ogy” (Zhu et al., 2010), it is less appropriate when changes occur
in land cover types (Huang and Zhang, 2014). The actual prediction
accuracy depends on the selection of input image pairs, as well as
their number and temporal distance (Olexa and Lawrence, 2014; Zhu
et al., 2010). This means that the usability of simulated time series for
soil coverage monitoring is restricted, since it is not known how the
intra- and inter-annual dynamics of different crops can be explained
by corresponding MODIS and Landsat image pairs. Thus, a thorough
evaluation of the limits of the method especially in the context of
agricultural settings is still needed (Lobell, 2013; Förster et al., 2015).

Regarding the example of a study site in Central Germany, this
study covers three topics:

1. We show how simulated vegetation NDVI time series of fine
temporal and geometric resolution and corresponding pheno-
logical crop information can be coupled.

2. We introduce a phenological evaluation scheme for such sim-
ulated NDVI time series.

3. We demonstrate how parcel-specific NDVI profiles can be
dynamically derived for specific days of the year (DOYs) and
phenological phases.

Finally, the results are discussed in the context of operational
and parcel-specific assessment and monitoring of soil erosion risk by
water.

2. Materials and methods

2.1. Study site

The study site is located in the German Federal State of Saxony-
Anhalt approximately 30 km north of the city of Halle (Saale) (Fig. 2a
and b). Due to the fertile soils of the study area (chernozems), the
study site is characterized by intensive agricultural land use. The
soils are at high risk of erosion because of heterogeneous landscape
morphology, the erodibility of the dominant loess substrate and
occurring intense rainstorm events (Möller et al., 2012). The most
frequently grown crop types within the study site are winter wheat
(WW; Triticum aestivum L.), winter barley (WB; Secale cereale L.),
winter rapeseed (WR; Brassica napus L.), maize (MA; Zea mays L.) and
common beet (CB; Beta vulgaris). Fig. 2c and d illustrates typical rela-
tions of crop type-specific area percentages in the study site for 2011
and 2012.

2.2. Data

2.2.1. Landsat and MODIS
For the study area, five multi-spectral Landsat 5 TM images (DOYs

112, 128, 208, 272 and 288) and one Landsat 7 ETM+ image (DOY
232) for 2011 with a pixel size of 30×30 m2 were freely downloaded

http://modis.gsfc.nasa.gov
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/envisat/instruments/meris
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Fig. 1. Photograph of two parcels in Central Germany taken on June 19th 2013. The left parcel is covered by winter wheat. On the right parcel, maize emerges.
Source: Photographer: Daniel Wurbs, http://www.geoflux.de.

from the USGS Earth Explorer website3 and processed. Apart from
a Landsat 5 TM image on DOY 208, all acquired images were clear
over the study area. All Landsat data were atmospherically corrected
using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS, Masek et al., 2006). Reflectances in RED and NIR bands were
used to synthetically generate a once to twice daily time series based
on the MODIS terra product MOD09GQ at 250 × 250 m2 (Vermote et
al., 2015).

The Fmask algorithm (Zhu and Woodcock, 2012) was used to
detect clouds and cloud shadows in Landsat imagery. This algorithm
has been recently improved (Zhu et al., 2015). The algorithm is
publically available from the GitHub website4. It has been used to
produce the Landsat cloud mask product by the U.S. Geological Sur-
vey (USGS) Earth Resources Observation and Science (EROS) center.
All Landsat data were calibrated and atmospherically corrected using
the LEDAPS approach which has been adopted by the USGS EROS
center to produce the Landsat surface reflectance product. Now both
Landsat surface reflectance and cloud mask are the standard Landsat
data product which can be ordered and downloaded from the USGS
Earth Explorer website.

The MODIS surface reflectance data product includes cloud and
cloud shadow flags. We extracted the cloud and cloud shadow
information from the MODIS quality assurance (QA) layer (i.e., the
STATE_1km layer in the MOD09GA product) and generated a cloud
mask file for each MODIS observation.

Clouds and cloud shadows were masked out from both Land-
sat and MODIS. The MODIS daily surface reflectance at 250 × 250
m2 resolution (MOD09GQ; Vermote et al., 2015) were used to blend
with Landsat surface reflectance in RED and NIR bands. NDVI from
both actual Landsat observations and the fused Landsat-MODIS data
were computed to make dense NDVI time-series at 30×30 m2 spatial
resolution.

2.2.2. RapidEye
Fifteen RapidEye images (see Table 3) were obtained from the

RapidEye Science Archive (RESA5). RapidEye provides imagery at a

3 http://earthexplorer.usgs.gov.
4 https://github.com/prs021/fmask.
5 RapidEye Science Archive (https://resa.planet.com) is maintained by PLANET on

behalf of the German Aerospace Center (DLR). This study was supported under project
634.

spatial resolution 5×5 m2, and across five bands that cover the BLUE,
GREEN, RED, REDEDGE, and NIR spectral value ranges (Tyc et al.,
2005). The scenes were atmospherically corrected using the Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes algorithm
(FLAASH; Anderson et al., 2002).

Four images are affected by clouds and cloud shadows. Unlike
Landsat and MODIS imagery, RapidEye imagery do not contain SWIR
bands which are usually used to mask clouds. Here, clouds and cloud
shadows were detected by a cluster analysis (Fraley and Raftery,
2002) of the parameter BRIGHTNESS which was calculated within
the software environment eCognition (Trimble, 2011). The clustering
results were visually classified.

2.2.3. Phenological and meteorological observations
In Germany, a phenological monitoring network consisting

of around 1200 active volunteer observers is operated by the
German Weather Service (in German: Deutscher Wetterdienst =
DWD) according to standardized criteria (Kaspar et al., 2014). The
irregularly distributed observers report the beginning of principle
growth stages which subdivide the phenological cycle “in clearly rec-
ognizable and distinguishable longer-lasting developmental phases”
(Bleiholder et al., 2001). The most common agricultural crops and
their corresponding phenological phases observed in 2011 and 2012
are listed in Table 1.

2.2.4. Parcel boundaries and crop types
Parcels are legislative reference units for measuring soil

conservation and erosion control (Volk et al., 2010). They are defined
as unique in terms of growing crops and tillage operations (Möller
et al., 2013). In Europe, detailed information about parcels’ struc-
ture, size and crop type, which can vary annually, are stored in
the European Commission’s Land Parcel Identification System (LPIS;
Inan et al., 2010, Montaghi et al., 2013). In principle, LPIS informa-
tion is only publicly accessible in aggregated form and cannot be
directly localized due to privacy protection (Kandziora et al., 2013).
In this study, test site-specific data for 2011 and 2012 were made
available for scientific research by the Ministry of Agriculture and
Environment of Saxony-Anhalt.

http://www.geoflux.de
http://earthexplorer.usgs.gov
https://github.com/prs021/fmask
https://resa.planet.com
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(a) Germany (b) Study site
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(c) Dominant crop types in 2011
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(d) Dominant crop types in 2012

Fig. 2. Saxony-Anhalt in gray and the extent of the study site in red (a), a RapidEye image (5-4-3) from May 5th 2011 overlayed with physical block and parcel polygons from 2011
(projection: EPSG code 32632; Spatialreference, 2016) b) as well as the area percentages of the most important crops winter wheat (WW), winter barley (WB), winter rapeseed
(WR), maize (MA) and common beet (CB) in 2011 (c) and 2012 (d). The total agricultural used area of the study site is 43500 ha. The cultivation data were provided by the Ministry
of Agriculture and Environment of Saxony-Anhalt (see Section 2.2.4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

2.3. Workflow

Fig. 3 shows the technical workflow for the evaluation of a
simulated index time series which can be categorized into four parts:

1. Separately for the RED and NIR spectral bands (B), reflectances
of MODIS (MD) and Landsat (LS) imagery (RMD

B , RLS
B ) are fused

into synthetic spectral index images at the Landsat spatial
resolution for each DOY (IsLS

DOY ; Section 2.3.1).

2. Germany-wide phenological information is provided by the
PHASE model which enables the prediction of beginning crop-
specific phenological stages by relating observed phenological
events (DOY(P)) to measured DOY-specific mean temperatures
(TDOY) and digital elevation data (E; Section 2.3.2).

3. Both data sets are referred to specific reference units (RU;
here: parcels) for which medians (x̃) of simulated spectral
index values for phase-specific DOY are calculated (IsLS,P

DOY,RU;
Section 2.3.3).

Table 1
List of agricultural crop types and phenological phases (Kaspar et al., 2014) observed in 2011 and 2012. 5: begin of flowering | 10: tilling, sowing, drilling | 12: emergence | 13:
closed stand | 14: rosette formation | 15, 67: shooting/growth in height | 17: bud formation | 18, 66: panide emergence, beginning of ear | 19: milk ripeness | 20: wax-ripe stage |
21: yellow ripeness | 22: full ripening | 24: harvest | 41: end of flowering | 65: tassel emergence. The analyzed crop types are bold emphasized.

Crop type (Abbreviation | latin name) ID Phase

Winter wheat (WW | Triticum aestivum L.) 115 10, 12, 15, 18, 19, 21, 24
Winter rye (WRy | Secale cereale L.) 121 10, 12, 15, 5, 18, 21, 24
Winter barley (WB | Hordeum vulgare L.) 131 10, 12, 15, 18, 21, 24
Winter rapeseed (WR | Brassica napus L.) 311 10, 12, 14, 67, 17, 5, 22, 24
Oats (OA | Avena sativa L.) 140 10, 12, 15, 66, 19, 21, 24
Maize (MA | Zea mays L.) 411 10, 12, 67, 5, 65, 19, 20, 21, 24
Potato (PO | Solanum tuberosum L.) 612 10, 12, 13, 24
Common beet (CT | Beta vulgaris) 620 10, 12, 13, 24
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Fig. 3. Technical workflow for the evaluation of simulated index time series. DOY(P): day of an observed phenological event | TDOY: measured mean day-specific temperature | E:
elevation | RB: band-specific reflectance | IDOY: DOY-specific spectral index | x̃(IP

DOY ,RU): median (x̃) of a spectral index I for a specific DOY of an observed phenological event and a
reference unit (RU).

4. During the actual evaluation process, RU-specific medians of
index values of available RapidEye images (x̃(IRE,P

DOY ,RU)) are sta-
tistically compared with medians of simulated index values
(x̃(IsLS,P

DOY ,RU); Section 2.3.4).

The workflow is intended to be used for any spectral index. In this
study, the workflow is adapted to the NDVI.

2.3.1. STARFM
The STARFM was originally introduced by Gao et al. (2006) to fuse

MODIS and Landsat data to a synthetic temporal equidistant time-
series with the spatial resolution of Landsat. The main objective of
the STARFM was to improve the analysis of large-scale vegetation
patterns (Gao et al., 2015). Other authors used the resulting synthetic
imagery for crop biomass estimation (Meng et al., 2013), tracking
phenological changes in dryland forest vegetation (Walker et al.,
2012), supporting habitat assessment (Coops et al., 2012), analyzing
forest degradation (Gärtner et al., 2016) or improving the classi-
fication of conservation tillage adoption (Watts et al., 2011). The
algorithm has some restrictions, especially when predicting hetero-
geneous land-use pixels (Zhu et al., 2010). The accuracy of prediction
depends strongly on the spatial and temporal variance of a target
pixel (Emelyanova et al., 2013).

The STARFM algorithm requires a pair of images acquired on the
same date (t0): one with a fine spatial resolution (most often Land-
sat) and one with a low spatial resolution (most often MODIS). With
this basic constellation, a fine spatial resolution image on date t1
can be predicted for any given low spatial resolution image at the
date t1. The basic concept is that for a homogeneous area (a pure
MODIS pixel), the change of reflectance in two MODIS images (from
t0 to t1) are close to the change of reflectance in Landsat images. If
the changes from MODIS images are known, one can simply apply
these changes to the Landsat image and predict Landsat observation
at time t1. However, the difficulty is that the homogeneous pixel at
coarse resolution is hard to find. To solve this problem, the STARFM
algorithm uses a moving window approach to predict the central
pixel by using spectrally similar pixels (e.g., similar land cover and
state) to the central pixel from Landsat image at date t0. The changes

of MODIS reflectance from two dates for all spectrally similar pixels
are computed within the moving window. Contribution from each
spectrally similar pixel is weighted using a weighting function deter-
mined by the spatial distance from the central pixel, the spectral
difference between Landsat and MODIS, and the spectral difference
between two MODIS images. Once the prediction for the central pixel
is determined, the algorithm moves to next pixel and assigns this
pixel as the central pixel and repeats the process.

In the operational data fusion system (Gao et al., 2015),
MODIS daily directional reflectances are first corrected to the nadir
BRDF (Bidirectional Reflectance Distribution Function) adjusted
reflectance (NBAR) using the MODIS BRDF magnitude inversion
approach and MODIS BRDF parameter (Schaaf et al., 2002). The
MODIS daily NBAR are reprojected and resampled to Landsat 30 × 30
m spatial resolution and UTM projection. Co-registration is applied
to the MODIS and Landsat pair images by using Landsat image as
a reference. The MODIS pair image is shifted to the location where
the maximum correlation between two images occurs. The STARFM
algorithm can use one or two pairs of Landsat and MODIS images to
predict a Landsat-like image on a MODIS date where a Landsat over-
pass is not available. The one pair option is used in the operational
data fusion system since it is difficult to obtain two clear Landsat-
MODIS image pairs with surface conditions reasonably similar to the
prediction date especially for a cloudy region.

2.3.2. Phenological modeling
The PHASE model was used for the generation of Germany-wide

raster data sets, which contain the spatially explicit day of entry for
beginning phenological crop phases (Gerstmann et al., 2016a). The
statistical fitting model follows the growing degree days approach,
which assumes a relation between the timing of observed phenolog-
ical events and phase-specific thresholds of daily heat sums (Chuine
et al., 2003). The model workflow consists of two steps:

1. Country-wide daily temperature observations are spatially
interpolated and linked to observations representing pheno-
logical events (DOY(P)). Outliers, which remained after the
application of automatic quality control routines by the data
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set provider, are removed from the data set. This filter-
ing procedure excludes all observations that are not inside
the interval of 1.5 standard deviations around the mean of
all observations. The accumulated temperature sum between
sowing and the observed DOY is calculated.

2. The DOY on which the temperature sum for any location
exceeds a phase-specific critical temperature sum, indicating
the day of entry of the modeled phase, is finally interpolated
by a Kriging algorithm.

Germany-wide available temperature and phenological stations,
as well as a 1 × 1 km2 resolution digital elevation model (DEM) were
used as input data. The parameter settings used in this study are
described in detail by Gerstmann et al. (2016a).

2.3.3. Data coupling
Table 2 illustrates a principle coupling result. Technically, RU-

specific DOY and NDVI medians are extracted from each phenological
interpolation and simulated NDVI layer. The period between the
beginning of a certain phase and the beginning of the following phase
is considered as a specific phenological phase. The corresponding
phase name is then assigned to the database.

Each table element represents the state of a specific reference
unit (RU) on a certain DOY, as expressed by a RU-specific median of
index values and the corresponding phenological phase (x̃(IP

RU,DOY )).
A column characterizes the variation of RU-specific medians in a
study site on a certain DOY (x̃(IP

RU∈[1...n],DOY )). Each row stands for the
RU-specific index variation during a year (x̃(IP

RU,DOY∈[1...n])).

2.3.4. Evaluation
Similar to Hilker et al. (2009), Zhu et al. (2010), Walker et

al. (2012) and Olexa and Lawrence (2014), synthetically generated
index data set was assessed regarding their performance during
multiple phenological phases by non-parametric Spearman’s rank
correlation according to Eq. (1) (Davis, 2002). The corresponding coef-
ficient q is an indicator of the general similarity between two sets
of ranked variables. In this study, RU-specific NDVI medians were
compared. The term inside the brackets of the numerator is the dif-
ference between the rank (R) of NDVI medians of RapidEye images
(x̃(NDVIRE,P

DOY ,RU)) and NDVI medians of the corresponding simulated
Landsat images x̃(NDVIsLS,P

DOY ,RU).

q = 1 −
6 × Sn

RU=1

[
R

(
x̃
(

NDVIRE,P
DOY ,RU

))
− R

(
x̃
(

NDVIsLS,P
DOY ,RU

))]2

n(n2 − 1)
(1)

The rank correlation was applied in order to balance possible
effects on NDVI values as result of different data acquisition condi-
tions (time of observation, sun angle, spectral response function, etc.)
as well as of the usage of different atmospheric correction algorithms
for Landsat, MODIS and RapidEye imagery (see Section 2.2; de Souza
et al., 2010, López-Serrano et al., 2016).

Table 2
Reference unit- (RU) and phase-specific (P) medians of synthetically generated
index values (x̃(IP

DOY ,RU) with RU ∈ [1 . . . n], DOY ∈ [1 . . . 365]) and P ∈
[5, 10, 12, 13, 15, 17, 18, 19, 20, 21, 22, 41, 65, 66, 67].

RU x̃(IP
1) x̃(IP

2) x̃(IP
3) x̃(IP

...) x̃(IP
365)

1 x̃(I1,1) x̃(I2,1) x̃(I3,1) x̃(I...,1) x̃(I365,1)
2 x̃(I1,2) x̃(I2,2) x̃(I3,2) x̃(I...,2) x̃(I365,2)
3 x̃(I1,3) x̃(I2,3) x̃(I3,3) x̃(I...,3) x̃(I365,3)
. . . x̃(I1,...) x̃(I2,...) x̃(I3,...) x̃(I...,...) x̃(I365,...)
n x̃(I1,n) x̃(I2,n) x̃(I3,n) x̃(I...,n) x̃(I365,n)

3. Results

3.1. Simulated NDVI imagery

As a strategy to select pair dates for the STARFM, the maximum
correlation of the NDVI bands was used based on the five Landsat 5
TM and MODIS pairs on April 22nd (DOY 112), May 8th (DOY 128),
July 27th (DOY 208), September 29th (DOY 272) and October 15th
(DOY 288) (see Section 2.2.1). The corresponding pixel- and DOY-
specific high coefficients of determination (R2) and low RMSE values
are plotted in Fig. 4a.

The Landsat 5 TM image on DOY 208 was further improved by
replacing cloud pixels using additional clear and valid Landsat 7
ETM+ pixels from DOY 232 (August 20th). The replacement was
also applied to the same MODIS pixels to ensure data consistency
between the Landsat and MODIS pair images.

3.2. Phenological phases

The interpolation results cover 33 begins of phenological phases,
which are characterized by a geometric resolution of 1 × 1 km2. In
Fig. 5, the phases of WW in 2011 are exemplarily shown in order of
temporal occurrence. Since emergence and sowing are strongly cor-
related (Gerstmann et al., 2016a), the modeling result for sowing is
not displayed. The model results follow the trends, which are typical
for Germany, of favored regions (e.g., the Rhine Valley, Central Ger-
man Lowlands), where a phenological event occurs relatively early,
and unfavored regions (e.g., coastal areas) of delayed phenology.

For each phase-specific prediction in this study, the accuracy met-
rics RMSE and R2 have been calculated using 10-fold cross validation
(Fig. 4b; Gerstmann et al., 2016a). Accordingly, the resulting model
accuracies vary from phase to phase, but can be characterized by
medians of x̃(RMSE) = 4.6 and x̃(R2) = 0.68. The RMSE decreases
during a vegetation cycle, beginning with an RMSE of approximately
11 days for emergence and four days for yellow ripeness.

3.3. Coupling of phenological and spectral index data

The coupling results are visualized in Figs. 6 and 7. LPIS parcel
objects from 2011 have acted as RUs (see Section 2.2). For winter
crops, parcel objects from 2011 and 2012 have been used, since these
crop types usually change on parcels after harvest in the summer.
Based on the database illustrated in Table 2 (Section 2.3.3), all crop-
specific figures result from a two-step procedure:

1. The definition of phenological temporal windows is based on
phase-specific boxplots for all considered phenological events
(DOYs) in 2011 (Fig. 8). A phenological phase is considered as
the period between the 25% quantile of a certain phase and
the 25% quantile of the following phase. In doing so, tempo-
ral gaps remain. This concerns the period between harvest and
phase 10 (beginning of tilling, sowing and drilling), which is here
referred to as a pseudo phase called after harvest (AH). In addi-
tion, the period between the first DOY and the first observed
phase of a year is named after the last observed phase in the
year before.

2. For each available simulated Landsat image, simplified box-
plots of x̃(NDVIP

RU∈[1...n],DOY ) distributions are calculated (see
Section 2.3.3; Figs. 6 and 7). Each yellow or red dot represents
a median value (x̃) of the x̃(NDVIP

RU∈[1...n],DOY ) distribution. The
value range between the 25% and 75% quantiles is visualized
by black or gray lines (x25−75). Black lines stand for MODIS
cloud coverage (CC) of maximal 50%, gray lines for cloud cov-
erage of maximal 100%. The comparison between each times
series reveals that the gray colored x̃(NDVIP

RU∈[1...n],DOY ) distri-
butions show a higher variability than the black-colored ones
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Table 3
Spearman's rank correlation coefficients between parcel-specific simulated Landsat and RapidEye NDVI values (q) for different crop types and phenological phases (P; see Table 1).

RE LS DDOY WW WB WR MA CB

q P q P q P q P q P

66 112 −46 0.67 12 0.68 12 0.70 14 0.31 AH 0.21 AH
99 −13 0.80 12 0.78 15 0.83 17 0.67 AH 0.47 10
108 −4 0.84 15 0.79 15 0.84 17 0.55 AH 0.49 10
114 2 0.80 15 0.79 15 0.76 5 0.56 10 0.51 12

128 128 0 0.95 15 0.92 18 0.94 5 0.72 12 0.82 12
142 14 0.20 18 0.05* 18 0.02* 5 0.24* 12 0.04* 12
157 29 0.29 18 0.15* 18 0.12* 5 0.15* 67 0.15* 13

197 208 −11 0.54 21 0.64 AH 0.45 24 0.44 65 0.45 13
238 30 0.18 AH 0.03* AH 0.51 10 0.28 20 0.32 13

245 272 −27 0.23 AH 0.29 AH 0.46 12 0.22* 21 0.32 13
264 −8 0.59 10 0.74 10 0.29 14 0.69 24 0.62 13
267 −5 0.76 10 0.90 12 0.54 14 0.81 24 0.83 13
275 3 0.82 10 0.94 12 0.57 14 0.81 AH 0.91 13

317 288 29 0.79 12 0.92 12 0.75 14 0.29 AH −0.03* AH
332 44 0.75 12 0.89 12 0.69 14 0.23 AH −0.21* AH

DDOY: temporal distances between original Landsat (LS) and RapidEye imagery (RE) | AH: after harvest. *Significance level p > 0.01, for all other q values: p < 0.01.

(Figs. 6 and 7). This is due to the fact that heavy cloud cover
reduces the number of median values, which in turn can affect
the x̃(NDVIP

RU∈[1...n],DOY ) distributions’ characteristic.

The resulting data set enables the visualization of phenological
and spectral index patterns for a specific study site and year. In prin-
ciple, the coupled results support the hypothesis of a relationship
between an annual vegetation index development (here: NDVI) and
the phenology of winter and summer crops. Typically, summer crops
are characterized by a single-peak greenness season and winter
crops by a bimodal (two-peak) greenness season (Förster et al.,
2012). The first peak, which occurs in autumn, is due to chlorophyll
formation during plant emergence. The major peak for winter crops
occurs in late spring. The NDVI peak of summer crops occurs later
than the second peak of the winter crops.

Winter crops are already sown in the autumn of the year before.
Winter dormancy is related to lower NDVI median values after crops’
emergence (phase 12WW,WR; see Table 1) or rosette formation (14WR;
Fig. 6). The early-year green phases are characterized by resuming
spring growth phases, such as shooting (15WW,WB) or stem elonga-
tion (67WR) and bud formation (17WR), resulting in increasing NDVI

median values. The end of these phases marks the beginning of
a NDVI plateau, which corresponds to the phenological phases of
ear heading (18WW,WB) and flowering (5WR). In contrast to WW and
WB, the NDVI median values of WR begin to decrease during this
phase, due to the fact that its reflectance is increasingly dominated
by yellow blossoms. During the phases of yellow ripeness (21WW,WR)
and full ripening (22WR), the declining chlorophyll activity leads to
falling NDVI median values, which are minimal shortly after harvest
(24WW,WB,WR). The reflectance is then affected by crop residues and
stubbles. Approximately from DOY 240 onwards, the NDVI median
value distributions show higher variances, which may result from
overlaying effects including study-specific poor simulation accu-
racies (Section 3.4) or the growth of weeds and volunteer grain
between harvest (phase 24) and the start of soil cultivation activi-
ties (phase 10). Finally, winter crops’ emergence is related to intense
chlorophyll activity, which causes higher vegetation indices.

Before summer crops are sown in spring, the corresponding
parcels are characterized by minimal NDVI median values. They
are associated with bare soils, which is typical for the study site
at that period (see Fig. 2b). This means that catch crops are usu-
ally not seeded. Apart from the fact that the vegetation emerges
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Fig. 4. Pixel-based internal accuracies metrics RMSE and R2 for STARFM (a) and PHASE modeling results (b) by comparing interpolated and observed values (PHASE) respectively
simulated and original Landsat NDVI values (STARFM).
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Fig. 5. Interpolated phenological phases emergence (12), shooting (15), beginning of ear (18), milk ripeness (19), yellow ripeness (21) and harvest (24) of winter wheat (WW) during
2011. Phase 12 (emergence) is part of the next vegetation cycle. Phase 10 is not displayed due to very high similarity to phase 12. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

later, the NDVI development is similar to winter crops. In contrast to
winter crops, the NDVI median values increase abruptly during emer-
gence (12MA,CB). Again, DOY 240 marks a boundary from where the
DOY-specific NDVI median value variability is significantly higher.

Besides from the global statistical characterization and pheno-
logical categorization of a certain study site, the same database also
enables a parcel-specific specification of parameter values regarding
their

1. spatial variation on a daily basis, thereby characterizing differ-
ent development stages of a phase on a certain DOY and

2. spatiotemporal variation, which depends on the phenological
development of crop types.

Case 1 is illustrated by Fig. 9, which shows an unsuper-
vised classification result (Fig. 9a), corresponding clusters and the
variation of parcel-specific NDVI medians for WW on DOY 66
(x̃(NDVIP=12

RU∈[1...n],DOY=66); Fig. 9b). According to Fig. 6a, DOY 66 is part
of phase 12 (emergence). The study site-related median value of the
x̃(NDVIP=12

RU∈[1...n],DOY=66) distribution is 0.33 which indicates a low soil
cover by green vegetation. The range of x̃(NDVI) values is between 0
and 0.64, while the corresponding 25% and 75% quantiles are x25 =
0.27 and x75 = 0.37.

Case 2 is demonstrated by the example of the blue-marked parcel
in Fig. 9a. Fig. 10a shows scatterplots of parcel-specific NDVI medians
and corresponding DOYs for the phases of emergence (12), shooting
(15) and beginning of ear (18) (x̃(NDVIP∈[12,15,18]

RU ). Accordingly, at the
beginning of phase 12 between DOYs 0 and 50, x̃(NDVI) values are

characterized by a large scattering. Then, DOY and x̃(NDVI) values
show a linear correlation. In Fig. 10b, x̃(NDVI) values are summarized
to phase-specific medians x̃

(
x̃
(
NDVIP

RU

))
of phases 12 (emergence), 15

(shooting) and 18 (beginning of ear).

3.4. Evaluation results

The evaluation results for all phases are summarized in Table 3.
Apart from the Spearman’s rank correlation coefficients between sim-
ulated Landsat and RapidEye NDVI median values (q), corresponding
phenological phases, as well as temporal distances between acquired
RapidEye and original Landsat images (DDOY), are listed. When
focusing on the temporal change in the relation between predicted
and observed NDVI median values, it is obvious that some synthetic
scenes do not fit as well as others for all crop classes and phases. In
this study, this concerns DOYs 142, 157, 238 or 245. This might be
due to the scene pairing. Looking at the utilized pair scenes, it can
be stated for this data set that the quality of the results decreases
the more the STARFM pairing date differs from the observed date
(Fig. 11). Such temporal differences can lead to unrealistic synthetic
images, which is related to the “temporal smoothing” effect (Zhu
et al., 2010). Consequently, simulations based on the temporally
close base pairs result in more accurate predictions, as is the case
for DOYs 128 or 275. As other studies have already shown (e.g.,
Zhu et al., 2010; Walker et al., 2012; Olexa and Lawrence, 2014),
the accuracy of STARFM predictions is strongly affected by the tem-
poral gap between the base input pair and the prediction date. In
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(b) Winter barley (WB — 131)
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(c) Winter rapeseed (WR — 311)

Fig. 6. Temporal windows of phenological phases for winter crops in 2011, corresponding DOY-specific simulated x̃(NDVIP
RU∈[1...n],DOY ) distributions for MODIS cloud coverages

(CC) of maximal 50 and 100% as well as acquisition dates of RapidEye and original Landsat imagery. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

this study, this becomes especially clear in the example of phase 13
(closed stand) of CB (Fig. 11).

The additional consideration of phenological ancillary data
reveals that there are phase- and crop type-specific differences,
which are an expression of the temporal stability of certain phases
(Fig. 11). On the one hand, high q values have been calculated at
long temporal differences for winter crop-related phases of WW
and WB (emergence), as well as WR (rosette formation). Both phases
are affected by winter dormancy, for instance during DOYs 66, 99,
275, 317 or 332. On the other hand, low q values can occur close
to changing phenological phases, despite close temporal distances
between base pairs and prediction dates. This concerns, for instance,
phase 14 (WR) on DOY 264 or phase 12 (CB) on DOY 114.

4. Discussion

4.1. Image simulation and phenology

The evaluation results in this study reflect a typical situation
where the accuracy of simulated index time series is controlled by

the annual changing number of base pairs for data fusion (Watts et
al., 2011). In other words, the simulation accuracy is characterized by
an unpredictable intra- and inter-annual change. This might be the
reason why simulated index time series are currently rarely used for
operational soil cover predictions and agricultural applications. It can
be stated that two variables influence the quality of a synthetically
derived time-series significantly:

• The pairing date of a synthetic scene should not deviate
strongly from the date of interest within the time-series.

• Long phases with a stable phenological development can be
predicted with higher precision (e.g., phases 12 and 14 of win-
ter crops) than for shorter phases with rapid changes (e.g.,
phases 5, 12 and 13 of summer crops).

From a pragmatic point of view, phenological information, such
as that provided by the PHASE model, seems to be helpful for a rapid
assessment of synthetic imagery whether the number of base pairs
covers time periods of seasonal changes in vegetation or crop type
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(b) Common beet (CB — 620)

Fig. 7. Temporal windows of phenological phases for summer crops in 2011, corresponding DOY-specific simulated x̃(NDVIP
RU∈[1...n],DOY ) distributions for MODIS cloud coverages

(CC) of maximal 50 and 100% as well as acquisition dates of RapidEye and original Landsat imagery. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

changes in a sufficient manner. For instance, the temporal gap in
base pairs between DOYs 128 and 208 causes poor simulation results
(Table 3). In this period, all investigated crop types are characterized
by a frequent change in phenological phases (see Figs. 6 and 7).

The data situation is expected to improve when the optical mul-
tispectral sensors, such as Sentinel-2 or HJ-1, are fully operational
(Drusch et al., 2012; Verrelst et al., 2012; Bian et al., 2015; Valero
et al., 2016). The European Space Agency’s Sentinel-2 constellation
is designed to allow a temporal resolution of 10 days at the equator

with one satellite, and five days with two satellites. The HJ-1 sensor
should be considered as the Chinese counterpart of Sentinel-2, with a
similar temporal and geometric resolution, but fewer spectral bands
and a smaller spectral range.

However, the potential high revisit frequency is limited by cloud
coverage, which decreases the actual acquiring frequency of optical
imagery (Valero et al., 2016; Whitcraft et al., 2015). This is especially
true in temperate regions, such as Central Europe. As recently shown
by Wu et al. (2015), the number of potential suitable images can be
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Fig. 8. Phase-specific (P) boxplots of predicted phenological events (DOY) for the study site in 2011 (Phase names: see Table 1).
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Fig. 9. Classification result of parcel-specific NDVI medians for winter wheat in 2011 and DOY 66 (a; projection: EPSG code 32632; Spatialreference, 2016), corresponding cluster
and NDVI median distribution (b). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

increased by using different fine-resolution satellite imagery. But dif-
ferent sensor systems entail the correction of systematic biases. This
can even be challenging for different Landsat sensors (Sulla-Menashe
et al., 2016) and requires a lot of data processing work (Wu et al.,
2015).

Nevertheless, the selection of optimal base pairs may gain
in importance regarding the application of spatiotemporal fusion
models. Concerning the example of HJ-1 imagery, Meng et al. (2013)
have shown that crop phenology is an important parameter in the
computation of time distance weights, which have to be proven as
enhancements to the STARFM algorithm. Thus, “the authors recom-
mend [. . . ] phenological information be taken as input when the
algorithm is applied in operational monitoring”. Here, we see a great
potential of the introduced PHASE model. The thematic depth of the
PHASE prediction results should be especially emphasized, as it is
superior and more crop-specific compared to common phenological
remote sensing-based parameters, such as green-up, onset, end and

length of the growing season (Hird and McDermid, 2009). The PHASE
model also enables the prediction of anthropogenic phases, which
reflect the beginning of management practices. The knowledge about
such periods is assumed to be crucial for the accuracy of data fusion
(Dong et al., 2016).

4.2. Potentials for the parcel-specific assessment and monitoring of soil
erosion risk by water

Parcel- and phase-specific simulated time series of remotely
sensed biophysical indices, as presented in this study, offer opportu-
nities for both the dynamic 1. parametrization of soil erosion models
and 2. monitoring of soil erosion risk:

1. Depending on their complexity and spatiotemporal scope, soil
erosion models differ regarding data requirements (Volk et al.,
2010). The coupling of phenological and spectral index data
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Fig. 10. Scatter plot of NDVI medians and corresponding DOYs (a) as well as NDVI median distributions (b) for the phases emergence (12), shooting 15 and beginning of ear (18) for
an exemplary parcel (see Fig. 9). DOY 66 is green emphasized. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 11. Phase- and crop type-specific relations between Spearman’s rank correlation coefficients (q) and temporal distances (DDOY; see Table 3).

results in a database (see Table 2 and Section 2.3.3), which
enables adapted parametrization. This especially concerns the
temporal resolution of information about soil coverage, which
can be provided on a daily basis (see Fig. 9) or for specific
periods. As shown in Fig. 10, the database enables the deriva-
tion of phase-specific soil coverage information, which can
reflect intra- and inter-annual variations in a more sufficient
manner than is often the case with monthly or even yearly soil
coverage parameters (Vrieling et al., 2014).

2. Supposing that the abovementioned intra- and inter-annual
uncertainty of simulation results (see Section 3.4) can be
significantly reduced by using imagery with fine temporal and
geometric resolution, such as Sentinel-2 or HJ-1 imagery, this
would represent the greatest benefit of parcel- and phase-
specific simulated time series in the development of automatic
and (almost) real-time monitoring systems. By considering
real-time areal precipitation measurements (e.g., Gerstner and
Heinemann, 2008), parcels might be prioritized where soil
erosion is likely to occur after heavy rain events, based on
dynamic modeling results (Wenwen et al., 2012). Fischer et
al. (2016) have recently shown how operationally available
precipitation measurements of high spatiotemporal resolu-
tion can be used for assessing rainfall erosivity in Germany.
Thus, efficient and dynamic erosion mapping could be realized
(Evans, 2013) to deliver results that would “promote aware-
ness among farmers and authorities” (Prasuhn et al., 2013).
In doing so, rather passive soil protection and hazard preven-
tion, which often only respond to apparent damages caused
by single severe soil erosion events, could be overcome (e.g.,
Miller et al., 2012).

The usage of satellite-based indices for soil erosion modeling
and monitoring requires their transformation into soil cover maps
or erosion model parameters. They can be derived by applying
empirical models (e.g., Van der Knijff et al., 1999). Such non-
validated information is often sufficient for empirical soil erosion

models (e.g., Wischmeier and Smith, 1962; Schwertmann et al.,
1990; Renard et al., 1991), which mainly aim to detect erosional pat-
terns and their qualitative assessment. Physically based models (e.g.,
Roo et al., 1996; Renschler, 2003; Schindewolf and Schmidt, 2012)
require quantitative information. Based on ground truth information
regarding soil coverage, they can be obtained by regression equation
models (e.g., Gitelson, 2013) or the application of spectral unmixing
techniques (e.g., Arsenault and Bonn, 2005, de Asis and Omasa, 2007).

The NDVI often acts as an explaining variable, although “it can-
not distinguish between bare soil and nonphotosynthetic vegetation
cover, which also offers soil protection” (Vrieling et al., 2008). This
means that the NDVI is temporally restricted during green phases,
such as emergence or shooting. As already mentioned in Section 1, the
identification of bare soils (Fox et al., 2004; Cui et al., 2014) or the
quantification of crop residue coverage requires specific algorithms
or indices, such as the Normalized Difference Tillage Index (NDTI;
Zheng et al., 2014). Selection can be controlled by the integral consid-
eration of phenological, spectral and agricultural land cover informa-
tion, which allows the definition of distinct spatiotemporal scopes
where different conditions of soil cover dominate (see Section 3.3).

As described in Section 2.3.3, the coupling of interpolated pheno-
logical phases (1 × 1 km2) and synthetically generated NDVI profiles
(30 × 30 m2) was realized by calculating parcel-specific median
values. In doing so, scale differences between both data sets ought be
balanced. Since the mean parcel size of the considered crops at the
study site is about 16 ha, the geometric resolution of phenological
information does not fit perfectly. Thus, one subject for analysis in
future is the derivation of large-scale phenological maps, which take
into account their scale-specific accuracy (Möller and Volk, 2015).

The presented coupled phenological and spectral index data can
help to localize “hot spot” parcels which show a potentially high
risk of soil erosion on a specific date or during a specific period. In
turn, a more detailed and complex modeling could be carried out
in an efficient manner, since the necessary parameterization effort
could be spatially restricted (Volk et al., 2010). On the one hand,
this concerns the usage of fine-scale spatial objects, such as pixels or
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spectral objects (Blaschke, 2010; Blaschke et al., 2014), which allow
for a geometric disaggregation of parcels as well as the analysis of
the within-field variability. More geometrically detailed data can be
directly obtained from the simulated spectral index data or from
other imagery, which is available for specific DOYs or periods. On the
other hand, if ground truth information and multispectral imagery
are available, NDVI alternatives can be calculated in an automatic
manner (Rivera et al., 2014; Gerstmann et al. 2016b). In doing so, an
index optimization may be carried out, resulting in a more accurate
prediction of soil cover information.

5. Conclusion

The monitoring of parcel-specific soil erosion on farmland,
together with the localization of erosional hot spots and temporal
patterns, requires soil coverage information with fine spatiotempo-
ral resolution. In this study, simulated vegetation NDVI time series
of fine temporal and geometric resolution, derived from fused satel-
lite MODIS and Landsat imagery, have been assessed regarding their
performance during multiple phenological phases. The evaluation
results show that the simulation accuracy is controlled by the tem-
poral distance between MODIS and Landsat base pairs, as well as
from the ability of the actual Landsat image to properly represent the
phenological phase of the Landsat image simulated by MODIS. We
consider the intra- and inter-annual uncertainty of simulation results
to be a decisive factor in the general use of such data, in the context of
soil erosion modeling. However, the situation is expected to improve
considerably when, in addition to Landsat, satellites with higher
repetition rates, such as Sentinel-2 or HJ-1, are fully operational.

On the example of a test site and one parcel, we demonstrated
that simulated NDVI time series and corresponding phenological
information enable the derivation of (1.) soil coverage information
on a almost daily basis as well as (2.) phase-specific soil coverage
information. The database thus obtained opens up new possibilities
for an efficient and dynamic erosion monitoring, which can support
soil protection and hazard prevention.
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