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Abstract Agricultural monitoring and assessment based on
satellite data increasingly gains importance due to the grow-
ing number of available satellite sensors with high geometric
and temporal resolution. Such tasks often require multiple
images acquired on specific dates that among others account
for inter-annual phenological variations to provide accurate
results. This contribution presents an approach that links
peaks of spectral separability profiles to crop phenological
phases. The phases are spatially interpolated using a phe-
nological model and ground observations. The profiles show
the respective temporal development of the F'-measure which
is used as indicator for class-wise separability. It originates
from binary classifications of vegetation indices computed
for each set of a satellite data archive covering multiple
years. Acquisition dates, which repeatedly show a separabil-
ity maximum define phenological indicator phases. Potential
alternative phases can be also defined. Experiments based on
multi-temporal RapidEye satellite imagery were performed
for three crops at two German test sites under different envi-
ronmental conditions. The results showed that the phases
yellow ripeness, heading and flowering can function as indi-
cator phases for high spectral separability of winter barley,
winter wheat and winter rapeseed. We could identify at least
two identical, stable indicator phases per crop type for both
test sites, which suggests the transferability and robustness
of the presented approach.
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Zusammenfassung Detektion von phénologisch definierten
Datenaufnahmezeitrdumen fiir die Klassifikation von Feld-
friichten

Auf Satellitendaten basierendes landwirtschaftliches Moni-
toring gewinnt durch die wachsende Anzahl verfiigbarer
Sensoren mit hoher zeitlicher und geometrischer Auflosung
zunehmend an Bedeutung. Fiir solche Anwendungen werden
oftmals Satellitendaten von verschiedenen Aufnahmetagen
bendtigt, deren Auswahl inter-annuelle phidnologische Vari-
ationen beriicksichtigen muss, um exakte Ergebnisse zu
liefern. Dieser Beitrag prisentiert einen Ansatz, um Maxima
von spektralen Trennbarkeitsprofilen mit phédnologischen
Phasen von Feldfriichten zu verbinden. Diese Phasen werden
unter Nutzung eines phénologischen Modelles und Beobach-
tungsdaten rdumlich interpoliert. Die Trennbarkeitsprofile
zeigen den zeitlichen Verlauf des F-Mal, das als Indika-
tor fiir klassenspezifische Trennbarkeit genutzt wird. Dieses
stammt von bindr klassifizierten Vegetationsindizes, die
fiir jeden Datensatz einer mehrjdhrigen, multi-temporalen
Zeitserie von Satellitenbilddatensitzen berechnet wurden.
Zeitpunkte, wihrend denen wiederholt das Trennbarkeits-
maximum beobachtet werden konnte, weisen die Indika-
torphasen aus. Potentielle Alternativphasen konnen ebenso
bestimmt werden. Die Untersuchungen wurden fiir drei
Fruchtarten in zwei Untersuchungsgebieten in Deutsch-
land unter verschiedenen Umweltbedingungen auf Basis
von RapidEye-Satellitendaten durchgefiihrt. Die Ergebnisse
zeigen, dass die Phasen Gelbreife, Ahrenschieben und Bliite
als Indikatoren fiir hohe spektrale Trennbarkeit von Winter-
gerste, Winterweizen und Winterraps dienen konnen. Fiir
jede untersuchte Fruchtart konnten wenigstens zwei, fiir
beide Untersuchungsgebiete iibereinstimmende, stabile Indi-
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katorphasen ausgewiesen werden, was die Ubertragbarkeit
und Robustheit des gezeigten Verfahrens belegt.

Schlagworter Spektrale Trennbarkeit - Phénologische
Phasen - Multitemporal - RapidEye - Deutschland

1 Introduction

The accuracy and efficiency of remote sensing applications
in agriculture based on optical satellite imagery is strongly
affected by the variability of crop type phenology. The phe-
nology of crops, describing the timing and the sequence
of developmental stages, varies significantly between crop
types as well as under different agronomic practices and
climates. This has to be considered when remote sensing
methods are applied for crop and land use mapping (e.g.,
Schmidt et al. 2014), in-season yield estimations for food
security assessment (e.g., Meroni et al. 2014) or efficient
image compositing (Frantz et al. 2017). All these applica-
tions require an exactly timed data set selection to provide
the most accurate results.

Crop type mapping is one key application in agricul-
tural remote sensing. To derive accurate land use maps that
are essential for many purposes, crop types can be effi-
ciently distinguished during specific phenological phases.
These phenological windows require dynamic adjustments
for annual variability in crop development, which has been
continuously studied during the last few decades (Murakami
et al. 2001; van Niel and McVicar 2004; Forster et al. 2012;
Conrad et al. 2014; Schmidt et al. 2014; Azar et al. 2016;
Moller et al. 2017).

The phenology-aided selection of the time steps based
on expert knowledge is widely studied (Guerschman et al.
2003; Pena-Barragan et al. 2011; Conrad et al. 2014; Schmidt
et al. 2014). However, these studies are often based on
static crop calendars that do not reflect weather-induced
annual shifts in phenology (Meroni et al. 2014). Crop-specific
responses to such variations account for inter-annual differ-
ences between the times of highest separability among crop
types (Nitze et al. 2015), which points at the necessity for a
dynamic derivation of spatial phenological information. For
this purpose, the analysis of temporal profiles that consist
of satellite-based vegetation indices (e.g., Frantz et al. 2017)
proved to be a successful strategy. For instance, phenolog-
ical metrics like maximum and minimum vitality derived
from such temporal profiles enabled the direct extraction of
a small number of key growth stages such as green up, head-
ing and senescence (Xu et al. 2017). Phenological in situ
observations, which usually provide a much higher number of
individual stages, can be alternatively used to interpret vari-
ations of separability profiles of crops (Forster et al. 2012).
Furthermore, they can be used to validate phenological stages
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derived from vegetation index profiles (Xu et al. 2017) which
are often highly affected by noise. The spatial modelling of
point observations of the crops’ growth status (Gerstmann
et al. 2016a) combines the advantages of spatially explicit
and in situ phenological data sets and can thus improve the
knowledge about critical days for crop type classification.

Currently, the majority of modelling and classification
approaches aggregates crop types of similar spectral and phe-
nological behaviour to wider classes such as winter cereals or
root crops. While these aggregations are sufficient for most
applications, information on crop species level is essential
for detailed yield predictions (Nitze et al. 2015), water man-
agement (Conrad et al. 2013), or subsidy control. However,
this class aggregation is often unavoidable, since data gaps
caused by cloud coverage or sensor-specific characteristics
limit the capability to separate spectrally similar species.

These data gaps are globally an issue for almost all appli-
cations based on optical remote sensing imagery. Hence, the
consideration of broader time frames increases the chance of
having usable data available during high separability periods.
Narrow alternative time frames can also be found by inter-
annual analyses of species-specific phenological behaviour,
but these time frames have only limited relevance due to the
mentioned high probability of data gaps.

The main objective of this study is to identify phe-
nological phases that suit for optimal class separation in
crop mapping. Therefore, a framework was developed that
systematically combines interpolated phenological ground
observations with satellite image acquisition dates and spec-
tral separability patterns. In doing so, phenological phases
are analysed in terms of their suitability as indicators for
optimal acquisition time frames.

The approach is applied to multi-temporal RapidEye data
acquired for an agriculturally used test site in Central Ger-
many. At this site, indicator phases are defined based on
separability profile and phenological phases. The transfer-
ability of these indicator phases is evaluated on a validation
site characterised by different growing conditions.

Finally, a web-based tool is presented that provides almost
real-time phenological raster data covering Germany to apply
the framework in practise.

2 Study Sites and Data
2.1 Site Descriptions

The two study sites have been intensively investigated
by the Terrestrial Environmental Observatories (TERENO)
research network that focuses on observations of long-term
climate change impacts on regional scales (Bogena 2016).
They were used for method development and testing, respec-
tively.
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The training site is located in Central Germany (Fig. 1),
approximately 30 km north of the city of Halle (Saale), with
the town Hettstedt being its centre (Fig. 2, left). The site con-
sists of two sub-sites: a western sub-site covering the eastern
parts of the Harz mountain range (HM) and an eastern sub-
site representing the adjacent lowlands (HL). Both sub-sites
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Fig. 1 Locations of the study sites in Germany and annual mean tem-

perature (DWD Climate Data Center 2017b). Projection: WGS84/UTM
Zone 33N

cover an area of 25km x 25km each. Annual mean temper-
atures and precipitation are 8.5 °C and 630 mm for HM and
9.2°C and 540mm for HL, respectively. The area is dom-
inated by agricultural land use on fertile chernozemic soils
that allow the cultivation of demanding species. The domi-
nating crop types are winter wheat, cropped on ~ 45% of
the agricultural area, winter rapeseed (= 20%), perennial
grassland (= 10%) and winter barley (=~ 10%).

The second site used for the transferability study is located
in the federal state of Mecklenburg-West Pomerania, in the
surrounding of the city Demmin (DM, Fig. 2, right). The site
covers an area of 35km x 35km. Annual mean temperature
and precipitation in DM are 8.7°C and 590 mm, respec-
tively. Here, sandy soils of reduced fertility require more
frequent cultivation of less demanding crops, which is repre-
sented by the lower percentage of winter wheat (= 30%) and
higher percentages of the area covered by perennial grass-
land (& 15%) and by less-demanding winter rye (& 5%).
Gradients between comparatively warm temperatures in the
HL and relatively cool temperatures in HM are apparent
in Fig. 1. Contrary to this strong gradient, the DM site is
characterized by a homogeneous annual mean temperature
which ranges between the two extremes of the Harz sub-
sites.

Two aspects determined the selection of the study sites.
First, natural conditions, e.g., soil fertility, should differ
among the regions to assess the robustness of the presented
framework. For instance, precipitation sums also varied
between the sites, especially in the strong easterly gradi-
ent of decreasing precipitation between the Harz sub-sites
(>700mm in the west and <500 mm in the east). Second,
crop types of the training and validation sites should show
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Fig. 2 RapidEye images of the study sites Harz (left) and Demmin (right) acquired on June 6, 2011 (HL), June 2, 2011 (HM) and July 3, 2010
(DM). Band combination RGB 3-2-1 (true colour). Fields with crop cultivation data are accentuated. Projection: WGS84/UTM Zone 33N
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some similarities to sustain the comparability of the results.
So, the field sizes should ensure that a sufficient number of
pure (not mixed) pixels is available for the calculation of the
reflectance means per field. Both study sites fulfilled these
requirements.

2.2 Satellite Data

Multi-temporal RapidEye data sets covering the HM and HL
sites between 2010 and 2015 were made available through
the RapidEye Science Archive (RESA; Borg et al. 2013,
grant no: 653). The RapidEye satellite constellation col-
lects imagery of the Earth’s surface in five spectral bands
(blue: 440-510nm, green: 520-590nm, red: 530-685nm,
red edge: 690—730 nm, near infra-red/NIR: 760-850 nm, Tyc
et al. 2005). The data were obtained at processing level 3A
with a spatial resolution of 5m x 5m. Atmospheric correc-
tion and cloud masking were performed using the software
ATCOR 20© (Richter and Schlédpfer 2015). For the DM site,
RapidEye data sets for the years 2010-2012 were avail-
able at processing level 1B with 6.5m x 6.5m resolution.
Preprocessing of these data sets was performed using the
software CATENA®O (Kraul et al. 2013) that also includes
ATCOR2©. The effects of differing sensor viewing angles
(Nagol et al. 2015) on vegetation reflectance are eliminated
by application of the ATCOR processing chain. The tem-
poral distribution of the data sets is displayed in Fig. 3 and
highlights inter-annual differences in temporal coverage and
density, which are typical for optical imagery of high tem-
poral and geometric resolution (Whitcraft et al. 2015).

2.3 Auxiliary Data

Parcel-based cropping information for 2010-2015 for the
Harz sites were provided by the Ministry of Agriculture and
Environment of Saxony-Anhalt and for DM via the TERENO
long-term research programme. As part of the European
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Fig. 3 Temporal distribution of the RapidEye data sets
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Table 1 Observed phenological phases for winter wheat (WW), winter
barley (WB) and winter rapeseed (WR) and corresponding phase IDs

Name ID Crop

Sowing 10 WW, WB, WR
Emergence 12 WW, WB, WR
Fourth leaf unfolded 14 WR

Shooting 15 WW, WB
Heading 18 WW, WB
Stem elongation 67 WR

Bud formation 17 WR
Beginning of flowering 5 WR

End of flowering 7 WR

Milk ripening 19 WW, WB
Yellow ripening 21 WR

Full ripening 22 WR

Harvest 24 WW, WB, WR

Commission’s Land Parcel Identification System (LPIS), the
parcels are determined by ownership structure and homo-
geneity regarding the cultivated crop type (Inan et al. 2010).
Germany-wide volunteer-based phenological point observa-
tions and meteorological measurements were obtained from
the German Weather Service (DWD Climate Data Center
2017a,c) via FTP.! The names of the available phenolog-
ical phases for winter wheat, winter rapeseed and winter
barley are listed in Table 1 along with their numeric code
according to the DWD observation programme (Kaspar et al.
2014).

Furthermore, a digital elevation model of 1 km x 1 km res-
olution was generated from the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM, Rabus et al.
2003).

3 Methods

The approach is based on crop-specific spectral separability
profiles for six subsequent years. These profiles were com-
puted from the RapidEye data sets by applying separability
analysis on spectral features (Gerstmann et al. 2016b) calcu-
lated from parcel averages of reflectances. The profiles were,
analogous to Moller et al. (2017), coupled with modelled phe-
nological phases. The separability maxima over time exhibit
the indicator phases, i.e., phenological phases that optimally
suit for crop separation. However, before finally assigning
the indicator phases, a reliability check was included, which
among others targets at the question, if the maxima of sepa-
rability occur at the same position over several years (here:

1 ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany.
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Fig. 4 Workflow for the detection of indicator phases for the optimal
separability of the crop types winter wheat (WW), winter barley (WB)
and winter rapeseed (WR)

2010-2015). The workflow is summarized in Fig. 4. The
components of the framework are described in detail in the
following sections.

3.1 Modelling of Phenological Phases

Phenological modelling was performed using the PHASE
model according to Gerstmann et al. (2016a). PHASE is a
statistical model based on the growing-degree-days approach
that relates phenological events to accumulated temperatures
from a defined starting point. The model sums up accumu-
lated daily mean temperatures between the day of sowing and
the observation of the phenological phase. The temperatures
have been interpolated from meteorological measurements
on the 1km x 1km DEM, for the period between sowing
of the crop and the observed date of a phenological event
on a phenological station. The temperatures are adjusted for
photoperiod on the specific location, which is dependent on
latitude and day of year. A specific temperature sum is defined
as the 45% quantile of the distribution of the temperature
sums for all phenological stations in Germany that reported
the target phase. Finally, the day on which this temperature
sum is exceeded at each station is determined and interpo-
lated on the Germany-wide grid.

The PHASE model as implemented in the PHASE Anal-
yser? web application was utilized to extract all DWD-
observed phenological phases of winter wheat, winter bar-
ley and winter rapeseed (see Table 1). This service is
a GeoServer3-based open source map server application
that provides daily updated phenological raster data. These
data sets were created using the PHASE model that was
implemented as a daily modelling routine. The results are
distributed under strict application of Open Geospatial Con-
sortium (OGC) standards via aDrupal4—based web interface.
In Fig. 5, the subsequent processing steps are displayed,
beginning with the automatic modelling, followed by the
creation of the web services and visualisation. The under-
lying infrastructure utilises php-based parser applications to
integrate the required input data automatically into a Post-
greSQL/PostGIS database. These back-end procedures are
required to call the PHASE model at a daily temporal inter-
val (“Cronjob™).

3.2 Spectral Separability Assessment

The separability analysis was exemplarily implemented for
the three crop types winter wheat, winter barley and winter
rapeseed, which dominate the Harz study site. These species
are most relevant for regional modelling approaches or yield
estimations, as they cover around 60% of the total agricultural
areas in the study sites. The high number of available classes
(> 60) would lead to inaccurate results, because they include
numerous crop types that are only cultivated on a small num-
ber of fields. Thus, the analyses were performed only on fields
that were covered by the target crops and other crop types cul-
tivated at least on 25 fields on average over the study period,
which includes summer-cropped wheat, durum wheat, barley
and oats, as well as winter rye, maize, sugar beet, potatoes
and perennial grassland. Consequently, the used fields cov-
ered more than 75% of all fields in the study area, but the
number of classes was reduced by more than 80%.
Vegetation index profiles show specific (inter-) annual
patterns that can be traced back to plant phenological
phases (Forster et al. 2012) and are, along with single band
reflectance values, powerful features for crop classification
(Low et al. 2013). Thus, a setting similar to the configu-
ration presented by Low et al. (2013) was implemented. It
combined single-band reflectances and four well-established
vegetation indices as spectral features (see Table 2). The Nor-
malized Difference Vegetation Index (NDVI, Rouse et al.
1974), which is the most frequently applied vegetation index
for agricultural remote sensing applications, shows a variety
of issues that can be solved by including of other spectral

2 http://phase.geo.uni-halle.de/phase-wms-dienste.
3 http://www.geoserver.org.

4 http://www.drupal.org.
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Fig. 5 Workflow of the
automatic generation of
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:&l:resi)ec\ifagle ;zggﬁégiiscezs fi) r;d Index Abbreviation  Formula References
g;:) giclelgulation of separability Normalized Difference Vegetation Index NDVI % Rouse et al. (1974)
Green NDVI GNDVI % Buschmann and Nagel (1993)
Red edge NDVI RE_NDVI %ﬁ:}‘;’z Gitelson and Merzlyak (1994)
Wide-Dynamic Range Vegetation Index =~ WDRVI % Gitelson (2004)
Blue band Bl Pblue Tyc et al. (2005)
Green band B2 Pgreen
Red band B3 Pred
Red edge band B4 Pred edge
Near infrared band B5 PNIR

Pregion reflectance in the specified spectral region

bands or mathematical modifications. Three of these modi-
fications (Table 2) were incorporated into the classification
scheme. Each of the modifications is more sensitive to a spe-
cific shortcoming of the NDVI, specifically the Red Edge
NDVI(RE_NDVI) for the red edge region as a vitality indica-
tor, the Green NDVI (GNDVI) for green chlorophyll content
and the Wide-Dynamic Range Vegetation Index (WDRVI)
for saturation of the band reflectances.

Classifications were applied at the field level, because
object-based classifications are reported to be superior to
pixel-based approaches when high resolution imagery is used
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(De Wit and Clevers 2004; Blaschke 2010). A single-date
classification approach was chosen to reflect the high proba-
bility that in some parts of the world, e.g., cloud cover limits
the availability of multiple data sets useful for classification
(Nitze et al. 2015; Frantz et al. 2017). For each acquisition
date and parcel, mean values of the spectral bands and indices
extracted from the RapidEye data were calculated.

Next, a classification scheme was set up that performs
the widely used supervised random forest classification
(Breiman 2001) implemented by Liaw and Wiener (2002) in
the statistical computing environment R (R Core Team 2016).
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The critical parameters node size and number of trees was
set to 2 and 1000, respectively. This ensures stable results
and reduces the chance of building over-fitted trees (Kuhn
and Johnson 2013).

Three feature evaluations were performed per acquisi-
tion date, to find the best-suited feature for the separation
of each target crop. Here, each spectral feature was classified
sequentially. Evaluations were performed as binary classifi-
cations, i.e., features of fields covered by one out of the three
target crops, winter wheat, winter barley and winter rape-
seed, were classified against those from all other fields (see
right box in Fig. 4). Finally, the F'1- or F-measure, intro-
duced by van Rijsbergen (1979), was calculated as a metric
for the assessment of the class-wise classification accuracy.
The F-measure is defined as the harmonic mean of the pos-
itive predictive value (precision) and the true positive rate
(recall) of the classification confusion matrix. This statistic
is especially meaningful for non-parametric classifiers and
proved to be a good accuracy measure for random forest-
based crop classifications (Low et al. 2015). Precision, recall
and F-measure were calculated based on the contingency
table produced by the random forest implementation.

The specific optimal index per crop and acquisition date
was then defined as the spectral feature with the highest F'-
measure. Based on the F-measure of all acquisition dates, a
temporal profile of separability was computed (see Sect. 3.3).

3.3 Phenological Indexing of Inter-Annual Separability
Patterns

All available modelled phases (see Table 1) for the three
target crops for the years 2010-2015 were processed. Fol-
lowing Moller et al. (2017), a test site-specific phenological
phase was considered as the period between the crop-specific
medians of two subsequently beginning phases. The period
between the first DOY and the first observed phase of a
year was named after the last observed phase of the previous
year.

The phenological indexing of separability patterns was
started with the coupling of the separability profiles and the
corresponding phenological phases. The duration of the last
observed phase before harvest was prolonged by 1 week to
address the stronger small-scale variations in harvesting due
to the sequence of operations within farming cooperatives.
The shift of the modelled harvesting ensured that the major-
ity of all fields were actually harvested on the acquisition
date. Furthermore, since the phases were linked to spectral
response of the crops, the prolongation also addressed the fact
that freshly harvested fields are often hard to distinguish from
fields with fully ripened cereals using the spectral regions
recorded by RapidEye. This similarity is due to the fact that

crop residues remaining on the fields spectrally resemble
ripened crops before harvest.

A score value RF was calculated to assess the reliability
of a phase to be optimal for separation of the corresponding
crop type according to the following equation.

RP = Njpo x (Fhy + Flan) (D

ch;)s describes how often a phase has been identified as
optimal for a year and study site. For these observations,
FP _and FP  represent the maximum and mean of the
F-measures. This score value was required to account for dif-
ferences of the temporal distribution of the satellite images.
Such temporal gaps might possibly lead to undetected peri-

ods of high separability (see Fig. 3 and Sects. 1 and 2.2).

4 Results
4.1 Phenological Development

The phenological differences for all phases of the target crops
between 2010 and 2015 vary among the sites, which is exem-
plarily shown for winter wheat in Fig. 6. For winter barley
and winter rapeseed, these patterns are similar. In general,
it could be observed that the growing season in DM starts
with a delay of 1-4 days compared to HM and 5-12 days
compared to HL, with the exception of 2015 when shooting
started earliest in DM. The end of the growing season showed
an opposite tendency, because the model predicted the start
of the harvest period in DM 3-12 days earlier than in HL.

4.2 Spectral Separability Profiles

For each test site and each of the three investigated crop
types, spectral separability profiles were computed from the
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Fig. 6 Modelled phenological phases of winter wheat in the three study
sites for the years 2010 to 2015. The beginning of a phase is defined
by the modelled average day of year of phenological event in the study
site
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Fig. 7 Spectral separability
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highest F-measure of all classified spectral features per ran-
dom forest classification. The profiles are displayed as black
lines in Fig. 7 separately for the two Harz sub-sites. Intra-
annual patterns are visible that are characterized by peaks
and depressions of the calculated F-measure profiles. For
instance, winter wheat and winter rapeseed showed higher
F-measures at their annual maximum and less intra-annual
variations than winter barley.
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4.3 Phenological Indexing of High Separability Time
Frames

The RapidEye imagery of the HL and HM test sites, for which
the annual F-measure was maximal, were coupled to the cor-
responding phenological phases (Fig. 7). The phase with the
highest reliability value R” (Eq. 1) value is considered as
the optimal phenological indicator phase. All other phases,
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Table 3 Indicator phases
Crop Phase N(fi,s DOY win DOY max FP. FP . RF Spectral feature
Winter wheat Heading 7 153 175 0.89 0.81 11.94 Band 4
Shooting 4 122 130 0.82 0.80 6.48 Band 4
Yellow ripening 3 200 213 0.73 0.66 4.16 GNDVI
Winter barley Yellow ripening 8 173 207 0.73 0.63 10.80 WDRVI
Shooting 3 111 125 0.28 0.20 1.44 NDVI
Winter rapeseed Beginning of flowering 6 123 143 0.91 0.81 10.31 Band 4
Stem elongation 2 88 88 0.88 0.88 3.50 Band 5
Bud formation 2 88 88 0.81 0.78 3.19 Band 5
Fourth leaf unfolded 3 274 37 0.64 0.33 2.90 Band 5
End of flowering 2 153 157 0.75 0.66 2.81 Band 5

Number of observations (N, OIIZS

), earliest (DOY pin) and latest (DOY ) observation, maximum (Frf:

') and average F-measure (F7, ), reliability

(R") and spectral variable with highest F-measure (phases: see Table 1). The phases are ordered decreasingly according to their R” value

during which the annual separability reaches its maximum at
least twice, are referred to as alternative phenological indica-
tor phases. Table 3 summarizes the resulting indicator phases
and corresponding separability metrics.

For winter barley, only the phases “yellow ripening” and
“shooting” were detected to be optimal at least twice. “Yellow
ripening” showed the highest R” value, since it was consid-
ered as optimal a total of eight times. In addition, both FF
and FP_  are significantly higher than for “shooting”, which
was selected three times. The WDRVI reached the highest F'-
measure during “yellow ripening”, while during “shooting”,
the NDVI outperformed all other spectral features.

Three indicator phases could be found for winter wheat.
“Heading” (N, (fl))s = 7) outperformed “yellow ripening”
(NL, = 3) and “shooting” (NL = 4). Ff, and FL are
comparable for “shooting” and “heading”, while for “yellow
ripening”, the F-measure metrics were significantly lower.
The red edge band was the best-performing spectral feature
both for “heading” and “shooting”.

The phases usable as indicators for rapeseed classification
are, as expected, dominated by “beginning of flowering”,
with a R? value of 10.30. During flowering, the NIR
reflectance of rapeseed starts to decrease while the reflectance
measured by the green spectral band, that is nearest to the
yellow wavelength region, increases as a consequence of
the intense yellow colour. These changes are visible in the
reflectance spectrum and unique during that temporal period
compared to the other crops that are still highly vital. Further-
more, four time frames are potential alternatives, namely the
phases “stem elongation”, “bud formation”, “end of flower-
ing” and “fourth leaf unfolded”, which are characterized by
very low reliabilities. The F . of 0.88 and 0.81 for “stem
elongation” and “bud formation” almost reach the values for
“beginning of flowering” (0.91). It is also noteworthy that
“stem elongation” showed a higher P value than “begin-
ning of flowering”, but is observed as optimal much rarer.

4.4 Regional Transferability and Validation of Indicator
Phases

The F-measure separability profiles of the DM study site, for
which both environmental conditions and temporal distribu-
tion of the data sets are different compared to the two Harz
sites (see Sect. 2), were also calculated and are visualised in
Fig. 8.

The profiles clearly show a dependency on data availabil-
ity, since not all indicator phases are represented at least by
one data set in every year. Accordingly, the separability max-
imum for winter wheat was observed during “heading” in
2010 and 2011, which was found to be the optimal indicator
phase for winter wheat separation based on the Harz sites
analyses. Also, the annual maxima of the F-measure sep-
arability profiles for winter barley in 2010 and for winter
rapeseed in 2012 exactly correspond to the detected optimal
phases.

In 2012, no data set was available that represented “head-
ing” for winter wheat. There, the separability maximum
was observed during the alternative phase “shooting”. How-
ever, this maximum is found six days before the optimal
phase “heading” starts, which corresponds to the uncertainty
caused by modelling, observation and small-scale differences
between parcels (Gerstmann et al. 2016a).

The maximum separability for winter barley in 2011 was
found during the alternative phase “shooting”. In 2012, no
data set was available during “yellow ripening” or “shoot-
ing”. In general, the F-measures for winter barley are low
(< 0.5) due to relatively small sample sizes (< 20) and thus
the findings are only of limited reliability.

No data set was available during the optimal phase of
winter rapeseed (“beginning of flowering”) for 2010. The
detected separability maximum occurred during the alter-
native phase “end of flowering”. “End of flowering” was
also detected as optimal for 2011, although a data set rep-
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Fig. 8 F-measure separability profiles for winter wheat, winter barley and winter rapeseed for the DM site and the phenological indicator phases
detected through the analysis of the HL and HM test sites (see Fig. 7; Table 3). The numbers represent the phenological phases (see Table 1)

resenting the indicator phase “beginning of flowering” was
available.

In summary, the separability maxima coincide with the
defined phenological indicator phases (optimal or alterna-
tive) in eight out of nine crop-year-combinations. For three
crop-year-combinations, no data set was available represent-
ing the optimal phase, which underlines the necessity for
definition of alternative phases.

S Discussion
5.1 Phenological Uncertainty

As the results showed, phenological phases can be used as
indicators for acquisition time frames suitable for spectral
discrimination of crops. However, as described in Sect. 4.4,
sources of potential inaccuracy have to be considered when
interpreting the results. In this study, this especially concerns
the phenological interpolation results of the PHASE model,
which also provides the kriging standard deviation as spatial
inaccuracy metric (Gerstmann et al. 2016a). This metric can
be used for additional interpretation of the separability pro-
files. Accordingly, the model uncertainty is expected to be
between 3 and 8 days (Moller et al. 2017), with the majority
of phases less than 5 days. Based on data of 2011 Gerstmann
et al. (2016a) reported accuracies for winter wheat between
<4 and 11 days, for winter barley between 3.8 and 5 days and
for winter rapeseed between 5 and 7 days. Modelling earlier
phases was associated with higher uncertainty than that of
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the later phases. Due to small-scale variations in plant phe-
nology, the period of phase transition must be understood as a
gradient rather than a sharp turnover. Phenological variations
in turn are caused by management or cultivar-specific differ-
ences that cannot be observed by the monitoring network.
Additionally, the reliability of volunteer-based observations
is complicated to assess due to the subjectiveness of the obser-
vation design (Flanagin and Metzger 2008; Mehdipoor et al.
2015).

5.2 Sensor-borne Uncertainty

The defined phenological patterns also depend on the tempo-
ral composition of the satellite data sets. Time frames of high
separability may remain undetected in situations of reduced
image availability. Since the image acquisitions for the Harz
data set are almost synchronous for both sub-sites, this factor
is assumed to be negligible for this site. However, it becomes
more important, e.g., for winter rapeseed at the Demmin site,
for which the first acquisition in 2010 was available in the
“end of flowering” phase only. In other words, this data set
was acquired after the detected optimal phase “beginning of
flowering”, which underlines the necessity of having alter-
native indicator phases (see Sect. 5.4).

5.3 Separability Profiles
The separability profiles are based on a small set of spectral

features which are well-established for a large variety of crop
types. Other sensors such as Sentinel-2 provide additional
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bands especially in the red edge and short-wave infra-red
wavelength ranges useful for crop mapping (e.g., Immitzer
et al. 2016). As the separability profiles are partly charac-
terized by strong variations, optimized spectral indices, as
proposed by Rivera et al. (2014) or Gerstmann et al. (2016b),
could lead to more stable profiles.

The accuracies achieved by application of machine learn-
ing algorithms such as random forest generally tend to
increase with the number of included predictor variables.
Hence, this would be the preferred strategy instead of clas-
sifying each feature separately if the approach is applied
in practise. The performance analysis of the spectral fea-
tures could then be assessed by their variable importance,
a parameter that ranks the predictor variables according to
their contribution to the prediction accuracy. In doing so,
both classification results and time frame reliability should
increase. As a side-effect, the probability to produce an over-
fitted model would be reduced, although Breiman (2001)
reported that random forest classifiers are relatively robust
against overfitting to the training data compared to other clas-
sification approaches. However, in this study, we refrained
from this option and applied a single-variable random forest
approach instead to reduce the complexity for the demonstra-
tion of the approach and the results. Nevertheless, overfitting
might be an issue when only one predictor variable is used
as it is the case in this study, but several variations of the
parametrisation (tree size, number of trees, number of ter-
minal nodes) of the random forest classifier only slightly
affected the results.

5.4 Alternative Indicator Phases

Alternative phases, that have been detected as optimal at
least twice, can be valuable indicators for data set selec-
tion when no satellite data are available during the optimal
phenological time frame. However, alternative phases can
produce additional inaccuracies. For instance, the alternative
phases “bud formation” and “stem elongation” for winter
rapeseed showed comparably low R values, since they rep-
resent short phases only. Thereby, exact start and end dates
are complicated to define due to the modelling uncertainty of
the beginning phenological phases (see Sects. 4.1 and 5.1).

From the botanical perspective, “bud formation” and
“stem elongation” are actually more reliable than indicated
by R”. The selection of these early spring phases is due
to shorter winter dormancy of rapeseed compared to the
dormancy of cereal crops. This difference is measurable
by vegetation indices as an earlier increase of photosyn-
thetic activity. The alternative indicator phase “fourth leaf
unfolded” occurs before winter dormancy and is charac-
terized by significantly higher green vegetation coverage
compared to winter cereals, which is also measurable by veg-
etation indices.

5.5 Validation and Regional Transferability

The regional transferability was proven for most of the inves-
tigated crops and years. However, as mentioned earlier in
Sects. 4.4 and 5.2, no data set was available during the opti-
mal phase for some crop-year combinations, which means
that the expected separability maximum could not be found.

The bad performance (F < 0.5) for winter barley could be
due to the fact that barley was cultivated on between 20 and 40
fields only. This number is remarkably lower than for winter
wheat and winter rapeseed. Consequently, data gaps due to
clouds or other factors had a stronger influence on statistical
analysis than for wheat and barley, since sample sizes can
easily fall below the lower threshold of approximately 30
samples for reliable statistical analyses.

5.6 Application Strategies

Both mono- and multi-temporal approaches can benefit from
the presented methodology, once time frames have been
defined also for other relevant crop types. For mono-temporal
classification, a single data set should be selected for a point
in time when the growth status of all target crops is within
an optimal or alternative phenological indicator phase.

Multi-temporal classification should include at least one
data set acquired during the optimal phase for all relevant
crops at the study site. Thus, if the modelled indicator phases
are available in the PHASE Analyser distribution system (see
Sect. 3.1), they can be obtained and used for the user-specific
application without the necessity of having a continuous tem-
poral coverage of the satellite data over the complete growing
cycle.

For multi-temporal classification, the approach would
most likely lead to some congruent acquisition dates that are
optimal for most of the crop types. For instance, the alterna-
tive phase “shooting” of winter wheat and winter barley is
congruently timed with the optimal phase “beginning of flow-
ering” for winter rapeseed. This supports the findings by, for
instance, Schmidt et al. (2014) and Murakami et al. (2001).
In their studies, a total of three to four images was found to
be necessary to achieve a sufficient classification accuracy.
However, the proof if the identified indicator phases are also
valid in multi-temporal classifications is still an outstanding
task.

The presented approach combined with the described web
interface can assist data-intensive classification approaches
based on satellite data of high spatial, spectral and temporal
resolution like Landsat8, Sentinel-2 or HJ-1, since it repre-
sents an effective strategy to reduce the calculation effort.
This reduction is due to the focus on the most significant
spectral features instead of all spectral bands provided by
these sensors and on the reduction of acquisition dates to
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be included in the classification during the most distinctive
temporal periods.

Other applications which might benefit from phenological
indicator phases and pre-assessment are hierarchical classi-
fication frameworks (e.g., Forster et al. 2012; Forkuor et al.
2015) and phenology-adaptive algorithms for compositing
(Frantz et al. 2017). In the latter approach, the sub-images
that are merged into phenology-adaptive, pixel-based image
composites have to be selected to preferably represent an
identical growth status of the land use classes. Especially
in regions of persistent cloud coverage like Zambia, which
Frantz et al. (2017) investigated in their study, the approach
presented in this study can improve the timing of such target
dates. Lastly, crop yield estimations for food security espe-
cially in regions of large inter-annual phenological variations
(Meroni et al. 2014) might also be improved by the applica-
tion of phenological indicator phases.

All these applications focus on the retrospective selection
of already acquired remote sensing data. Beyond this, the
spatially explicit knowledge of the phenological indicator
phases can be applied to accurately schedule airborne flight
campaigns or tasked satellite image acquisitions.

6 Conclusions and Outlook

This study presented a methodology that combines multi-
annual crop separability profiles and automatically modelled
phenological phases to derive indicator phases. These phases
represent periods of time within a growing season during
which spectral separability of a crop type is maximal, at least
for the selected classification approach.

We tested the methodology for three frequently cultivated
crops in Germany at two study sites under different environ-
mental conditions and different data characteristics in terms
of pre-processing and satellite image acquisition dates. The
results showed that for each of the investigated crop types a
minimum of two stable indicator phases exist.

The approach is currently spatially limited due to Ger-
many’s unique phenological observation network. However,
the promising results suggest to put further research on its
transferability to other regions of similar natural conditions.

Apart from crop mapping, the general framework of
linking systematically collected phenological ground truth
observations to vegetation reflectance patterns is ready to be
tested for a large variety of other possible applications within
an agricultural context. Thereby, the web interface providing
phenological raster data for entire Germany enables various
user groups to apply this approach of using phenological
indicator phases to their own specific study regions.
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