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a b s t r a c t

Detailed information on plant developmental stages, referred as phenological phases, can assist research,
applications and synergies e.g., in land use, climate science and remote sensing. Usually, detailed ground
information about phenological phases is only available as point observations. However, in most applica-
tion scenarios of spatially interpolated phenological information is required. In this article, we present an
approach for modeling and interpolation of crop phenological phases in temperate climates on the exam-
ple of the total area of Germany using statistical analysis and a Kriging prediction process. The presented
model consists of two major parts. First, daily temperature observations are spatially interpolated to
retrieve a countrywide temperature data set. Second, this temperature information is linked to the day
of year on which a phenological event was observed by a governmental observation network. The accu-
mulated temperature sum between sowing and observed phenological events is calculated. The day on
which the temperature sum on any location exceeds a phase-specific critical temperature sum, which
indicates the day of entry of the modeled phase, is finally interpolated to retrieve a countrywide data
set of a specific phenological phase. The model was applied on the example of eight agricultural species
including cereals, maize and root crops and 37 corresponding phases in 2011. The results for most of the
tested crops and phases show significantly lower root mean squared errors (RMSE) values and higher
goodness of fit (R2) values compared to results computed using Ordinary Kriging (OK) and Inverse
Distance Weighting (IDW). The modeling accuracy varies between 2.14 days and 11.45 days for heading
and emergence of winter wheat, respectively. The uncertainty of the majority of the modeled phases is
less than a week. The model is universally applicable due to automatic parametrization, but model accu-
racies depend on the crop type and increase during a growing season. The possibility to enhance the
model by additional explaining variables is demonstrated by consideration of soil moisture within an
extended model setting.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Phenology studies periodic events in plant development and
their dependence on shifting environmental factors such as tem-
perature, day length and precipitation (Kirby et al., 1987;
McMaster et al., 2009). Such events and phases are clearly visible
developmental stages like blossoming or ripening (Schwartz,
2006).
The main climatic drivers of plant phenology vary in different
ecoregions. Temperature is the main driving factor for intra-
seasonal timing of phenological events in temperate regions like
Central Europe (Chmielewski et al., 2004; Menzel, 2007). Many
studies observed that in temperate climates the timing of pheno-
logical events is relatively stable and independent of other envi-
ronmental factors than temperature (e.g., McMaster et al., 2009).
Other factors influencing plant phenological development are pho-
toperiod (Masle et al., 1989), daily temperature amplitude
(Solantie, 2004), water availability and soil moisture especially in
arid and semi-arid climates (McMaster and Wilhelm, 2003; Idso
et al., 1978), solar radiation, distance to coasts and settlements, soil
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properties (Zhao et al., 2013) and management factors like date of
planting or fertilization practices (Nellis et al., 2009).

Crop phenology in Germany follows several spatial trends. Due
to Germany’s temperate climatic conditions, phenology is predom-
inantly determined by temperature. Other factors influencing phe-
nology in temperate regions to a lesser extent are precipitation and
soil moisture, especially for autumn phases (Menzel, 2007), eleva-
tion, sea proximity and population density (Hense and Müller,
2007). Thus plant development in Germany is delayed in coastal
and mountainous regions compared to the favored regions in
south-western and central lowland regions (Siebert and Ewert,
2012).

Knowledge about plant phenological phases and their timing is
of interest for wide application scenarios. Since plants react to
changing temperatures and carbon dioxide content, long-term
phenological time series can be used to monitor responses of plant
phenology to global and regional warming (Estrella et al., 2007).
Prevailing phenological information is also required for the assess-
ment of famine risks and food production problems (Vrieling et al.,
2011).

Several studies have also shown the potential of phenological
information to support land cover classification of remote sensing
images, models for crop yield estimation and precision farming on
regional and continental scales (Van Niel and McVicar, 2004; van
Bussel et al., 2011; Möller et al., 2012; Foerster et al., 2012;
Prishchepov et al., 2012). Furthermore, phenology information
has the potential to provide valuable input to soil erosion monitor-
ing (Möller et al., 2015), mapping of biodiversity (Turner et al.,
2003) or monitoring of invasive plant species (Bradley and
Mustard, 2006; Huang and Asner, 2009).

Such support can be expected to continue to gain importance
since the temporal availability of medium or high spatial resolu-
tion satellite sensors will considerably increase once the
Sentinel-2 satellite constellation is working operational (Berger
et al., 2012; Drusch et al., 2012). This requires reliable algorithms
for data set selection in which phenology can play a major role
to detect the most significant data sets for an image classification
problem (Möller et al., 2012). In doing so, the required data amount
is reduced with minimal loss in accuracy and thus enables an
operational use of these data amounts both in environmental and
agricultural sciences as well as in policy and decision making.

Detailed phenological data are mostly available as point obser-
vations of irregular spatial distribution which represent phenolog-
ical phases in standardized numeric codes. Spatial information
about phenological phases of crops can be also extracted from
satellite images of high temporal resolution and corresponding
vegetation indices provided for instance by Meteosat (Sobrino
et al., 2013) and MODIS (e.g. Zhang et al., 2003; Lunetta et al.,
2006; Jönsson et al., 2010; Xiao et al., 2013). However, these meth-
ods are mostly applied on only a few clearly visible phases like
green-up or onset (Hird and McDermid, 2009).

The mentioned application scenarios require operationally
effective and detailed phenological information. To produce such
data, point observations have to be spatially interpolated using
phenological models. Menzel (2007) and Zhao et al. (2013) distin-
guish three main types of phenological models:

1. Statistical fitting models which relate climatic variables to phe-
nological development phases (e.g. McMaster and Wilhelm,
1997; Picard et al., 2005).

2. Mechanistic models that are based on cause-effect-
relationships (Jamieson et al., 1998; Kramer et al., 2000;
Ewert et al., 2002; Hänninen and Kramer, 2007).

3. Theoretical models which focus on plant physiological pro-
cesses (Kaduk and Heimann, 1996; Schaber and Badeck, 2003;
Peng et al., 2011).
Mechanistic and theoretical approaches require a large number
of parameters and experimental effort. Statistical fitting methods
only require a few input data sets, are of lower complexity and
thus more frequently applied. One of the most often applied statis-
tical fitting approach is based on the relation between the observa-
tion day of year of a phenological event (DOYobs) and the
corresponding accumulated effective temperature (Chuine et al.,
2003; Hänninen and Kramer, 2007). This phase- and plant-
specific temperature sum is usually referred as growing degree days
(GDD), heat units, or thermal time (Zhao et al., 2013).

The majority of studies focused on either a region of limited
extent or differences in plant parameters, mainly base temperature
(Holen and Dexter, 1996; McMaster and Wilhelm, 2003), for differ-
ent cultivars or cultivation sites of one crop type and between phe-
nological phases (e.g. Wang and Engel, 1998; Ewert et al., 2002;
Salazar-Gutierrez et al., 2013). A common problem is that the opti-
mal starting day for GDD summation is difficult to determine
(Wielgolaski, 1999). Furthermore, most of these studies do not
combine phenological models and spatial interpolation since they
often refer to pre-defined reference units (e.g. van Bussel et al.,
2011; Siebert and Ewert, 2012).

To address these disadvantages, we present a framework which
combines a geostatistical method and the GDD concept. In doing
so, all critical parameters are extracted automatically and dynam-
ically from the input data. After the geostatistical interpolation of
daily mean temperatures, temperature sums and observed pheno-
logical phases are empirically related in order to extract the entry
date of a specific phenological phase. These entry dates are again
geostatistically interpolated to obtain area-wide predictions. The
model has been designed to be easy-to-use, independent of expert
knowledge, extendable, and transferable to any region of temper-
ate climate where phenological observations and temperature
measurements are available. The framework consisting of the com-
bined model and the geostatistical interpolation was named PHASE
(PHenological model for Application in Spatial and Environmental
sciences).

In this article, we describe the model structure, its underlying
algorithms and methodological background (Section 3.2). We
demonstrate its application on a selection of frequently grown crop
types with special focus on winter wheat (Triticum aestivum L.) for
the entire area of Germany (Section 3.2.3) using temperature data
and phenological information provided on-demand for free by the
German Weather Service.1 The possibility to enhance the model by
additional explaining variables is demonstrated by consideration of
soil moisture within an extended model setting.
2. Materials and data

2.1. Phenological data

In Germany, the data base for phenological and meteorological
observations is of unique density and quality and thus well-suited
for model development. The German Weather Service (German:
Deutscher Wetterdienst – DWD) operates a phenological monitoring
network consisting of about 1200 active stations spread over
Germany which report the Julian day of entry (day of year –
DOY) for numerous phenological phases of agricultural crops, wine
and natural plants at the end of each year (Hense and Müller,
2007). Each plant is observed on a different number of stations,
depending on the abundance and agrometeorological relevance
of the respective crop type. The observations are recorded by vol-
unteers following standardized criteria, and a numeric code is
assigned for each phase (Table 1).

http://www.dwd.de


Table 1
Numeric codes for observed phenological phases of agricultural crops (Deutscher
Wetterdienst, 2015a).

Phenological phase Numeric code (phase ID)

Beginning of flowering 5
Full flowering 6
Beginning of sowing 10
Emergence 12
Closed stand 13
4th leaf unfolded 14
Beginning of shooting/stem elongation 15/67
Beginning of bud formation 17
Beginning of heading 18/66
Beginning of milk ripening 19
Early dough ripening 20
Beginning of yellow ripening 21
Beginning of full ripening 22
Harvest 24
Beginning of tassel emergence 65
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A certain degree of quality control is already applied to these
data, which is based on a multi-step cross validation procedure
using ±25 days observation error as first threshold and ±15 days
error in the second step (Hense and Müller, 2007). The most fre-
quently cultivated crops in Germany (Statistisches Bundesamt,
2011) and the related, continuously reported phases are listed in
Table 2. The annually collected phenological observations of these
predominantly grown crops can be obtained via FTP server
(Deutscher Wetterdienst, 2015a).

The distribution of the phenological stations is irregular both
between regions of different environmental conditions and within
regions of similar suitability for cultivation of a specific crop. For
instance, in regions where winter wheat is cultivated frequently
(Central Germany, and southern Germany apart from the moun-
tainous regions) the point density varies between 1.5 and 3 sta-
tions per 1000 km2, but no regional trend is visible. In
mountainous and coastal regions, demanding crops cannot or only
rarely be grown so that observation density is much lower. Addi-
tionally, the number and location of observations vary between
different years due to crop rotation practices. Since the observers
define the extent of their observation area according to the current
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Fig. 1. Germany-wide input data sets. 1 km digital elevation model (a); all phenological a
for winter wheat in 2011 and all stations that provided daily temperature measurements
sources: USGS (2004) and Deutscher Wetterdienst (2015a).
cultivation status, positional accuracy of the phenological stations
is approximately 2–5 km in position and 50 m in elevation
(Deutscher Wetterdienst, 2015b). This limits the applicability for
modeling phenology on medium spatial resolution, because it is
impossible to consider temperature differences on mesoclimatic
scale. Despite quality control is operationally applied to the data
by the DWD, there are still outliers in the final product. In this
study, a statistical filter is therefore applied which only considers
observations within an interval of 1.5 standard deviations around
the mean of the total data set. Exemplary, all stations that reported
the phenological phase beginning of yellow ripening in 2011 are
shown in Fig. 1b.
2.2. Temperature data

Daily mean temperatures were obtained for 503 stations per
day on which the DWD is running daily automatic quality control
procedures to detect and remove measurement errors. This error
removal results in slight daily differences of the actual number of
temperature observations per day. The positional uncertainty of
the stationary temperature stations is assumed to be not signifi-
cant. The temperature stations are not regularly distributed
(Fig. 1b). Population density determines the network density as
well as meteorological criteria. For instance, in mountainous areas
where more short-term weather changes occur, the density is
higher than in lowland areas of more constant weather conditions.
2.3. Elevation data

Since temperature is strongly dependent on elevation and
topography, a digital elevation model (DEM) is used as explanatory
variable for temperature interpolation. For this study, the SRTM
DEM (USGS, 2004, see Fig. 1a) was selected. The data set has been
produced by the space-borne STS-99 Shuttle Radar Topography
Mission (SRTM) sensor and is freely available outside the United
States at 90 m resolution with a vertical accuracy of 20 m and a
horizontal accuracy of 16 m (Rabus et al., 2003). The DEM has been
filtered following Lee (1980) to reduce signal noise. Elevations
below sea level were set to 0 m.
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(b)
nd meteorological DWD stations that observed the phase beginning of yellow ripening
on 1st January 2011 (b). Projection: EPSG code 25632 (Spatialreference, 2015). Data
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The DEM raster cells were aggregated to 1 � 1 km pixel size
with a total number of 358,320 pixels. The 1 km2 resolution was
chosen to consider the uncertainty in position and altitude of the
phenological observations.

2.4. Soil moisture data

The DWD also provides daily raster data which represent the
soil moisture in per cent of accessible field capacity for grass
covering entire Germany (Deutscher Wetterdienst, 2015a). Spatial
resolution of the raster data sets is 1 � 1 km. According to the data
set publisher (DWD Climate Data Center (CDC), 2016), the data set
is produced using observational data of approximately 280
synoptic climate stations. The soil moisture is calculated using a
modified Penman–Monteith rationale for determination of evapo-
transpiration (Löpmeier and Deutscher Wetterdienst, 1983). The
station-specific soil moisture values are interpolated using
multiple linear regression and triangulation. No quality assessment
routines are applied by the DWD, hence the data uncertainty can-
not be quantified. Apart of the algorithm-dependent uncertainty,
two further restrictions decrease the usability for the phenological
model. First, sandy loam is used as soil type for entire Germany
without taking regional differences into account. Second, the inter-
polated values for field capacity are only valid for unspecified grass
vegetation.
3. Methods

3.1. Methodological background

3.1.1. Phenological modeling
Numerous studies have shown that in temperate climates phe-

nological development correlates with accumulated heat sums
(Sitch et al., 2003; Miller et al., 2001; McMaster and Wilhelm,
1997; Russelle et al., 1984). They are calculated from the measured
daily mean temperatures above a base temperature TB, which is
the lower threshold for photosynthetic activity. The underlying
concept has been described by Réaumur (1735) and applied for
prediction of crop phenology for centuries. This relation is often
used for modeling plant phenology and is mostly referred as
growing degree day (GDD):

GDD … 0:5 � ðTmax � TminÞ � TB ð1Þ

According to Eq. (1), a GDD is the daily contribution to the accumu-
lated heat sum, Tmax and Tmin are the daily observed maximum and
minimum temperatures, and TB is the base temperature. TB can be
either species-specific or individual for each phase of a crop species
(Slafer and Savin, 1991). The daily GDD – beginning at a starting
point in time (DOYstart) – is then accumulated over a vegetation
cycle. Because winter crops are sown during autumn of the previous
year, the often-used 1st January is not necessarily the optimal start-
ing day. This day does not take environmental differences into
account which are expected to lead to inaccurate extraction of the
critical temperature sum. Station-specific starting days like the
day of sowing or the start of snow melt can be chosen instead to
respect topographic or climatic differences. Since other factors than
climate are also influencing the day of sowing, using snow melt as
starting point is also inappropriate. Hence we expect the reported
day of sowing (phase ID: 10, see Table 1) as most reliable starting
day.

On the day on which the accumulated temperature sum
exceeds a phase-specific threshold, the plant reaches the next
stage of its phenological cycle. However, this relation is only appli-
cable for phenological phases with a physiological background and
not for the phases sowing and tilling or harvest.
Photosynthetic activity can start even on days with a negative
contribution to GDD, if Tmax is higher than TB and Tmin is lower than
TB resulting in a mean temperature below 0 �C (McMaster and
Wilhelm, 1997). This can be especially the case during the early
months of a growing season. To determine the portion of the day
with temperatures higher than TB, hourly temperature measure-
ments are required. Since the use of hourly observations would
increase the amount of required data rapidly and we assume the
effect of on the modeling results to be negligible, we used observed
daily mean temperatures.
3.1.2. Kriging
Kriging is a widely-applied geostatistical method for interpola-

tion of spatial data that was first presented by Krige (1951) for
improving ore reserve estimations. It is an algorithm that uses
the decreasing autocorrelation between two sample points with
increasing spatial distance to predict intermediate values. The
algorithm is based on an empirical variogram and a fitted vari-
ogram model to predict a variable at a location where no sample
exist. Several theoretical variogram models exist, but the Matérn
(Matérn, 1960) model is strongly suggested for the interpolation
of spatial data (Stein, 1999) and can be used universally both for
short and long distance variation models (Hengl, 2009). This
variogram model includes a smoothing parameter kappa and a
Gaussian model as limiting case as well as an exponential model
as special case and thus is more flexible to local behavior of the
observations than other models.

Kriging allows the consideration of possible correlations of the
predicted variable with various explanatory variables (Hengl et al.,
2007). For instance, this is the case for air temperature, which shows
a dependency to elevation and surface topography. Kriging using
explanatory variables is referred as Universal Kriging, Kriging with
external drift or Regression Kriging. Other methods like Inverse
Distance Weighting interpolation, averaging values per polygon
and Ordinary Kriging can be understood as special cases of the
Regression Kriging method (Hengl, 2009), which hence is under-
stood as best linear unbiased predictor (Stein, 1999; Hengl, 2009).
3.1.3. Cross validation
Cross validation is an often applied method for accuracy

assessment for interpolations of environmental variables (Kuhn
and Johnson, 2013). It compares predicted values on a location
with the observed values on the same location. Leave-one-out
cross validation excludes one sample from the input data set
and predicts this sample using the surrounding observation
points. Afterwards, the difference between the predicted value
and the observed value is used as estimate of the prediction per-
formance. 10-fold cross validation is an alternative technique,
which is a variant of bootstrapping and is insensitive against out-
liers (Hengl, 2009). Here, the data set is split into 10 parts (folds)
of equal size and each fold is used for cross validation and calcu-
lation of the parameters Root Mean Squared Error (RMSE) and R2 as
metrics for the model’s goodness of fit. RMSE is a measure to
describe the difference between observed and modeled values
and is calculated according to Eq. (2).

RMSE …

�����������������������������
ðyobs � ypredÞ2

Nobs

s

ð2Þ

Here, yobs and ypred represent observed and modeled values and Nobs

is the number of observations. Cross validation provides global
accuracy measures as well as the residuals for each observation
which can be used to detect observations of high uncertainty that
in turn can affect the entire prediction result negatively.



 

 

 

Fig. 2. Structure of the basic model including preprocessing, fitting and spatial
interpolation. SRTM DEM - SRTM digital elevation model; Teff

sum - accumulated
temperatures from DOYstart to observed day DOYobs; TP - required heat units;
Qopt - Quantile of Teff

sum distribution that leads to lowest RMSE values; DOYP - day on
which accumulated temperature sum exceeds TP .
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3.2. Basic model conception

The core PHASE model follows the growing degree days
approach (see Eq. (1)) but includes day length as proxy for latitude
influences. It determines the number of required heat units to
reach a phenological phase, which is representative for the com-
plete study area. First, a station- and phase-specific threshold of
required heat units is determined (Eq. (3)).

Teff
sum‰j� …

XDOYobs

i…DOYstart

ðTi;j � TBÞ �
DLi

24

� �
ð3Þ

Teff
sum‰j� in heat units (HU) represents the accumulated effective tem-

peratures on a specific phenological station j between a fixed start-
ing day DOYstart and the observed phenological event DOYobs. T is the
daily mean temperature and DL the day length at the phenological
stations, TB is the base temperature.

Next, a critical HU value TP is determined as a quantile of the

distribution of all values of Teff
sum (Eq. (4)).

TP … QoptðT
eff
sumÞ ð4Þ

TP is the critical temperature sum required for a specific phase and

Qopt is the optimal quantile of Teff
sum of all phenological stations.

Finally, the first day DOYP on which the cummulated heat units
are equal or exceed the critical temperature sum TP is calculated
for each station.

The work flow in Fig. 2 can be distinguished in three parts:

1. Data pre-processing is performed which includes the interpola-
tion of daily temperature observations to retrieve a daily mean
temperature raster data set covering entire Germany (Ti;j in Eq.
(3); see Section 3.2.1) and the outlier detection of the phenolog-
ical observations,

2. Fitted values of the parameters of Eqs. (3) and (4) are estimated
by finding the configuration that leads to the lowest possible
RMSE, resulting in the calculation of accumulated daily effective

temperatures (Teff
sum).

3. DOYP is determined and interpolated to produce a raster data
set representing the day of entry of the target phenological
phase. Additionally, cross-validation is performed to assess
the prediction accuracy (Section 3.3).

Due to the automatic fitting procedures, the model is com-
pletely data-driven and no prior assumptions on the data distribu-
tion are required for modeling.

The model has been implemented within the statistical com-
puting environment R (R Core Team, 2015). All geodata are
imported using the R-packages rdgdal (Bivand et al., 2015) and
raster (Hijmans, 2015).

3.2.1. Temperature interpolation
The daily mean temperatures are interpolated using local

Universal Kriging (see Section 3.1.2) which is implemented within
the gstat package (Pebesma, 2004). Elevation is used as indepen-
dent variable to respect topography influences in the prediction.
A Matérn variogram model is automatically fitted to the empirical
semivariogram using the function fit.variogram() which is also
included in the gstat package. A crucial parameter is the number
of stations to include in the temperature prediction at a certain
location (nmax). In principle, the higher nmax the more accurate
predictions can be assumed. On the other hand, Kriging is based
on the assumption that more distant observations are almost inef-
fective for the prediction result (Hengl, 2009). Since computation
time increases strongly with increasing number of considered
stations, the number of the included stations should be reduced
to limit processing time.

3.2.2. Calculation of effective temperatures
The interpolated mean temperatures T are converted to station-

specific daily effective temperatures Teff (Eq. (3), comparable with
GDD in Eq. (1)). First, the base temperature is subtracted from the
mean temperature of each day. Next, the resulting temperatures
are adjusted to take the dependence of photosynthesis on available
sunlight (photoperiod) into account. Here, the observed mean tem-
perature are multiplied by the ratio of day length (DL [h]) to the
whole day.

DL is calculated using the R function daylength() that is included
in the package geosphere (Hijmans et al., 2014). TB is the base tem-
perature below which no growth occurs. Although different values
for TB exist, the most often applied default values which are used
independently of crop type and region are 0 �C, 5 �C or 10 �C. The
actual base temperature for a certain plant or cultivar and phase
can be also calculated by statistical formulas (Yang et al., 1995)
or selected using standard look-up-tables. In this study, a sequence
of TB values is tested ranging from 0 �C to 10 �C.

3.2.3. Extraction of DOYP

The plant- and station-specific critical temperature sum (Teff
sum)

for a phenological phase on a specific station is calculated by sum-
ming up all daily temperatures from a starting point DOYstart to the
day on which the phenological phase has been observed (DOYobs).
In this study, DOYstart is defined by the reported sowing day. All
negative effective temperatures are considered as not significant
for photosynthetic activity.



Table 2
Reported phenological phases for the eight typical field crops in Germany (DWD,
2015). See Table 1 for full phase names.

Crop Crop (scientific name) Reported phases

Winter wheat Triticum aestivum L. 10, 12, 15, 18,19, 21, 24
Winter rye Secale cereale L. 10, 12, 15, 5, 6, 18, 21, 24
Winter barley Hordeum vulgare L. 10, 12, 15, 18, 21, 24
Oilseed rape Brassica napus L. 10, 12, 14, 67, 17, 5, 22, 24
Oat Avena sativa L. 10, 12, 15, 66, 19, 21, 24
Maize Zea mays L. 10, 12, 67, 5, 65, 19, 20, 21, 24
Potato Solanum tuberosum L. 10, 12, 5, 24
Sugar beet Beta vulgaris subsp. vulgaris 10, 12, 13, 24
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Fig. 3. Boxplots of the observation days for winter wheat phases beginning of
shooting and beginning of yellow ripening in 2011 for the total area of Germany.
DOY … 111 represents 21st April and DOY … 195 corresponds to 14th July 2011.
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The day DOYP , on which the cumulative sum exceeds the indi-
cator temperature sum for the entry of a target phaseTP , that is
used as indicator for the entry of a target phase, is calculated for
each station. TP is automatically detected by testing 19 quantiles

(Q 2 ‰0:05; 0:95�) in steps of 5% of the Teff
sum distribution. The quan-

tile Qopt which leads to the lowest RMSE between observed and
estimated DOY is used for determination of TP .

3.2.4. Spatial interpolation of DOYP

The modeled days are passed to a Kriging interpolation with
elevation as independent variable using an automatically fitted
Matérn variogram model (see Section 3.2.1). The initial values for
fitting were set according to Hiemstra et al. (2009), the smoothing
parameter kappa was set to 1. Here, the optimal value for nmax is
determined using a 10-fold cross validation technique, and the
nmax value with the lowest RMSE is used for the final prediction.

3.3. Accuracy assessment

An estimate of uncertainty is provided as part of the Kriging
procedure. This estimate is referred as Kriging variance and repre-
sents the variance of the predicted result on each location in com-
parison to the optimum. The Kriging variance can be used to assess
spatial patterns in uncertainty of the prediction.

RMSE and R2 were computed using 10-fold cross validation (see
Section 3.1.3). For comparison, RMSE and R2 achieved by Inverse Dis-
tance Weighting interpolation (IDW) and Ordinary Kriging (OK)
applied on the raw phenological observation data using a Matérn
variogram model and the fit.variogram() function were computed.

3.4. Model extension using soil moisture

The model can be extended by further parameters that influ-
ence plant phenological development, e.g., soil moisture. Although
soil moisture is less effective for modeling plant development in
temperate climates than temperature (Fu et al., 2014), it is of spe-
cial importance for the model’s transferability to other, especially
arid and semi-arid climates where soil water availability more
influences plant development. Independently of the data limita-
tions mentioned in Section 2.4 and the, for the test site with its
temperate climate, expected low significance for the modeling
results, a second normalization of the daily effective temperatures

(Teff ) was tested (Eq. (5)).

Teff … ðT � TBÞ �
DL
24

�
1 � cosðp � hfcÞ

2
ð5Þ

Here, Teff is the daily contribution of a day to Teff
sum. T and TB are the

mean and base temperature, DL is the length of daylight and hfc is
the field capacity representing the soil moisture accessible by
plants. The additional normalization term is formulated to equal 1
when the plant available field capacity is 100% and declines in con-
ditions of stress due to soil wetness and drought, so that water def-

icits and surplus reduce the daily contribution of Teff to Teff
sum. In

doing so, a 10% deficit as well as 10% surplus, for instance, result
in the weighting factor of 0.976. Consequently, warm days with
many day light hours and 100% plant available field capacity are
understood as the most effective days for plant development.

4. Results and discussion

The model has been applied for all crop types and correspond-
ing phenological phases with a plant physiological background (see
Table 2) that were observed in 2011. This includes the spring and
summer phases of crops that were harvested in 2011, and the
autumn phases of the next vegetation cycle that was terminated
in 2012. The results are discussed with special focus on the phases
beginning of shooting and beginning of yellow ripening of winter
wheat, which is the most frequently grown crop type in Germany,
with the exception of perennial grasslands. In 2011, winter wheat
was grown on 19% of the total area under cultivation (Statistisches
Bundesamt, 2011), followed by maize (13%), winter barley (9%) and
winter oilseed rape (8%). Fig. 3 shows the corresponding DOY dis-
tributions for the total area of Germany whose outliers were
removed by statistical filtering (see Section 2.1).
4.1. Temperature interpolation

Daily temperatures between 2010 and 2011 were interpolated
covering all days for which observations exist. According to
Hengl (2009), 30–60 included observations result in sufficient
accuracy of the final prediction, while Webster and Oliver (2007)
stated that 100–150 stations are required at least. A 10-fold cross
validation has been applied on all days to determine the number
of stations to include in the temperature prediction at a certain
location (nmax) by subsequent testing of values from 10 to 20,
25, 30, 40, 50, 60, 100 and 200 (Section 3.2.1). The processing times
for the predictions of one single day are displayed in Fig. 4. In order
to balance prediction accuracy and computation time, the nmax
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value was set to 30 for all daily interpolations which provides only
slightly higher RMSE values than the optimum in most of the test
cases while it needs significantly less processing time of about
134 s on a standard PC (4 GB RAM, 2.7 GHz, Microsoft Windows
7OS 64bit). The calculated RMSE values for different values for
nmax vary about 0.06 �C with a decreasing trend to higher nmax
values. The RMSE values for all temperature interpolations are
below 1 �C on 89% of the days.
Table 3
Optimal model parameters and accuracy metrics for crop phenological phases observed in

Plant Phase TB [�C] Qopt TP [HU]

Winter wheat Emergence 0 0.35 58
Shooting 0 0.50 423
Heading 10 0.50 118
Milk ripening 5 0.45 588
Yellow ripening 0 0.45 1265

Winter rye Emergence 0 0.40 55
Shooting 0 0.55 413
Beg. of flowering 10 0.50 116
Full flowering 10 0.50 135
Heading 8 0.55 141
Yellow ripening 0 0.45 1283

Winter barley Emergence 0 0.45 73
Shooting 0 0.55 451
Heading 0 0.50 632
Yellow ripening 6 0.50 1064

Oilseed rape Emergence 0 0.45 107
4th leaf unfolded 0 0.40 260
Shooting 0 0.75 603
Bud formation 0 0.70 633
Full flowering 0 0.55 694
Full ripening 0 0.45 1484

Oats Emergence 0 0.40 66
Shooting 1 0.50 284
Heading 0 0.45 541
Milk ripening 0 0.45 855
Yellow ripening 0 0.45 1059

Maize Emergence 3 0.45 79
Shooting 8 0.45 160
Tassel emergence 3 0.45 625
Beg. of flowering 0 0.45 902
Milk ripening 0 0.45 1211
Early dough ripening 0 0.45 1364
Yellow ripening 0 0.40 1468

Potato Emergence 0 0.45 172
Closed stand 4 0.45 295

Sugar beet Emergence 3 0.45 73
Closed stand 3 0.50 421
4.2. Extraction of DOYP and model calibration

4.2.1. Base temperature

Daily temperatures for 2011 were transformed to Teff by nor-
malization regarding photoperiod and subtraction of the base tem-
peratures that have been determined iteratively by testing all
values between 0 �C and 10 �C. As Slafer and Rawson (1995) stated
for winter wheat, both base temperature as well as sensitivity to
photoperiod can vary between different cultivars of a species.
The base temperature that leads to the lowest errors in the final
prediction was used. Despite TB … 0 �C was used in most of the
cases (see Table 3), significant differences exist between both crops
and also phases of an individual crop. According to e.g. Salazar-
Gutierrez et al. (2013), TB can vary between 1.6 and 8.4 �C for dif-
ferent winter wheat cultivars. Nevertheless, TB can be considered
as a statistical variable in this study which enables the optimiza-
tion of model results.

In Fig. 5, the mean errors of the predictions are plotted in rela-
tion to the tested base temperatures. The errors for shooting clearly
exceed the errors for yellow ripening. For yellow ripening, the base
temperature is less decisive for values between 0 �C and 6 �C than
for shooting, for which the errors increase almost linearly with
increasing base temperatures. The stable errors for yellow ripening
for TB between 0 �C and 6 �C correspond to the most often reported
TB values for winter wheat, which are between 0 �C and 5.5 �C
(McMaster and Wilhelm, 2003; Barrett, 2013). The almost linear
2011.

nmax RMSE R2

Mod Raw IDW Mod Raw IDW

60 11.45 9.33 9.60 0.89 0.15 0.11
40 5.75 8.87 9.07 0.65 0.01 0.02
40 2.14 4.96 5.05 0.72 0.21 0.18
50 3.57 8.80 8.92 0.65 0.03 0.04
14 3.83 7.11 7.04 0.70 0.08 0.10

60 8.58 8.24 8.28 0.82 0.03 0.04
18 5.92 6.98 7.14 0.79 0.01 0.02
30 2.75 5.53 5.61 0.69 0.18 0.16
60 3.09 6.63 6.88 0.62 0.09 0.05
50 3.66 5.05 5.10 0.70 0.14 0.13
50 4.51 8.47 8.64 0.61 0.11 0.08

40 5.04 5.64 5.87 0.81 0.09 0.05
50 5.19 7.36 7.45 0.70 0.05 0.05
60 3.59 4.45 4.66 0.68 0.25 0.18
50 3.88 7.79 7.96 0.70 0.03 0.02

60 7.16 7.10 7.30 0.81 0.04 0.02
60 7.98 8.88 9.15 0.67 0.01 0.01
25 4.90 5.16 5.46 0.72 0.22 0.10
60 5.90 5.45 5.56 0.71 0.19 0.16
50 4.06 4.23 4.30 0.67 0.37 0.35
20 4.90 8.01 8.33 0.64 0.12 0.07

60 5.04 6.00 6.14 0.81 0.15 0.13
60 4.12 8.66 9.11 0.63 0.02 0.00
50 3.23 6.24 6.57 0.66 0.03 0.01
18 3.29 8.78 9.26 0.57 0.02 0.01
25 3.43 8.31 8.62 0.65 0.08 0.04

30 5.06 5.14 5.25 0.82 0.18 0.14
40 3.24 9.19 9.54 0.40 0.01 0.00
60 3.20 5.72 5.86 0.65 0.16 0.12
60 3.68 7.10 7.18 0.63 0.11 0.10
60 3.96 7.64 7.81 0.67 0.09 0.06
30 4.30 8.24 8.59 0.68 0.13 0.07
19 5.32 8.33 8.55 0.70 0.05 0.04

30 5.75 7.35 7.23 0.73 0.07 0.09
20 3.88 7.05 7.15 0.64 0.10 0.08

30 5.35 10.63 7.61 0.71 0.00 0.02
40 3.21 7.43 7.94 0.47 0.06 0.01
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increase of the mean error for shooting is probably caused by the
exclusion of days with a mean temperature below TB but photo-
synthetically effective hours (McMaster and Wilhelm, 1997). This
effect decreases for summer phases like yellow ripening, but is vis-
ible in all further modeling steps (Table 3).
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4.2.2. Temperature sums and optimal quantiles

For each phenological station and day, Teff for shooting and
yellow ripening of winter wheat were calculated to retrieve the

accumulated temperature sum Teff
sum between DOYstart and DOYobs

by using TB … 0 �C. According to Fig. 6, the median of Teff
sum for

shooting and yellow ripening are 423 HU and 1273 HU with stan-
dard deviations of 84.12 and 102.07, respectively.

The DOYP value on which the temperature sum exceeds each of
the tested quantiles was determined. The mean errors of the
observed and modeled values and corresponding Q values are
shown in Fig. 7. Accordingly, Qopt is equal to the expected median
for shooting and slightly below for yellow ripening where Qopt

equals the 45%-quantile.
All data points where the residual of DOYP and DOYobs is larger

than the standard deviation r of DOYobs were excluded from the
data set. This filtering process reduces the considered stations by
about 49% and 41% respectively (see Fig. 8). As a result, the model
fitting increases significantly. R2 and RMSE for the filtered point
data set are 0.65 and 5.75 for shooting and 0.70 and 3.83 for yellow
ripening. Point scattering is higher for shooting than for yellow
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For all other phases and plants, the optimal quantiles as well as TB

and RMSE values are listed in Table 3.
4.3. Interpolation of DOYP

The model results and Kriging uncertainties for the phenologi-
cal phases shooting and yellow ripening of winter wheat are shown
in Fig. 9. To retrieve an uncertainty measure in days, the square
root of the Kriging variance (Kriging standard deviation) is plotted.
Relatively early dates were modeled for the Rhine valley and the
favored regions in eastern Germany, while in mountainous and
coastal regions the plant development is delayed. In some regions,
the distribution of the observations is relatively coarse (see Fig. 1
and Section 2.1), which causes higher uncertainties (>6 days) com-
pared to regions of dense observations (�4 days). The prediction in
mountainous regions is of high uncertainty (>8 days) for both
phases.

The prediction is performed even in areas where a particular
crop cannot be grown due to unsuitable environmental conditions.
For instance, winter wheat can only be grown in regions with suf-
ficient precipitation, mild winters and warm summers as well as
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Fig. 9. Interpolated modeling results for the phenological phases beginning of shooting (a)
deviations (c and d). Projection: EPSG code 25632 (Spatialreference, 2015).
on fertile soils which are not present in entire Germany. However,
the model produces information independently of these require-
ments. This problem is particularly obvious in north-eastern
Germany. There, the soils are very sandy and thus not very fertile,
and winter wheat is consequently only rarely cultivated and
almost no observations exist from this area. However, the Kriging
algorithm predicts the phase using the closest locations, in this
case from the very fertile regions in Central Germany.
Consequently, regions of actually poor environmental conditions
appear to be favored for wheat cultivation. The integration of a
mask derived from soil types or detailed land use information that
margins the prediction on potential cultivation areas could solve
this problem in the future.

4.4. Optimal parametrization and model accuracy

The results of the applied 10-fold cross validation (see
Section 3.3) are listed in Table 3, where the determined optimal
model parameters nmax; Qopt and TP and the accuracy metrics

RMSEmod and R2
mod of the interpolated model output for all tested

crops and phases are combined. The metrics RMSEraw and R2
raw,
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derived by Ordinary Kriging of the raw phenological observations
and RMSEIDW and R2

IDW , calculated using the widely applied Inverse
Distance Weighting interpolation for the original and unfiltered
observations, are added for comparison.

Qopt is mostly �5% around the median, with the exceptions of
emergence of winter wheat, winter rye and oats. In case that TB is
differing between two subsequent phases, TP can be lower for
the later than for earlier phase. This is the case for the phases
shooting and emergence of winter wheat, for which TB differs by
10 �C. However, the determined TP in general correlates to GDD
values published in the literature (e.g., Miller et al., 2001). The
modeling of the early phases shows higher RMSEmod values and
smaller differences to RMSEraw values compared to later phases,
while no declining trend is visible for RMSEraw values. Since emer-
gence occurs only a few days after sowing, this phase depends
highly on management practices and less on temperature, and
the model accuracy is consequently reduced for this phase.
RMSEmod is higher than RMSEraw for some phases e.g., for emergence
of winter wheat, winter rye, oilseed rape and potatoes, which indi-
cates deficits of the model for early phases.

Oilseed rape phases are modeled with lower accuracy than
other crops. For two phases, shooting and bud formation, the opti-
mal quantile is significantly above the median (75% and 70%,
respectively). Additionally, RMSEmod for bud formation is higher
than RMSEraw and RMSEIDW . This higher uncertainty indicates a
stronger dependency of their phenological development on factors
which are not considered within the model like comparatively high
requirements to nitrogen, potassium and sulfur nutrition (Grant
and Bailey, 1993) or fertilization.
4.5. Integration of soil moisture

For each of the 1 � 1 km DEM and temperature raster cell, the
corresponding soil moisture value was extracted for every day
and used for calculation of the modified effective temperature term
(see Eq. (5)). The consideration of the soil moisture normalization

term for the calculation of Teff resulted in reduced RMSE for 18 of
the modeled phases, while the remaining 19 showed no effect or
slightly increased RMSE. The improvement is highest for emergence
of winter rye, with RMSE decreasing by more than 4 days. The
Table 4
Difference of RMSE between modeling results with and without consideration of soil moistu

W. wheat W. rye W. barley

Emergence 0.55 �4.38 0.49
Shooting �0.03 �0.05 0.03
Heading 0.27 0.23 0.02
Milk ripening 0.09 – –
Yellow ripening 0.07 0.1 0.27
Beg. of flowering – 0.03 –
Full flowering – �0.09 –
4th leaf unfolded – – –
Bud formation – – –
Full ripening – – –
Early dough ripening – – –
Tassel emergence – – –
Closed stand – – –

Table 5
Correlation coefficients r and p-values for DOYh

P ; DOYP and DOYobs against the observed da

Emergence Shooting H

r p r p r

DOYP 0.98 <2.2e�16 0.49 <2.2e�16 �
DOYh

P
0.98 <2.2e�16 0.50 <2.2e�16 �

DOYobs 0.94 <2.2e�16 0.31 8.6e�8 �
improvement for early dough ripening of maize is close to one day,
while the other performance gains are less than 0.5 days. In general,
the effect of incorporation of soil moisture on the model accuracy is
low, only for two phases it is close to one day or higher (see Table 4).

4.6. Correlation between date of sowing and phenological events

The date on which a plant was sown is an additional, anthro-
pogenic influencing factor on plant phenological development
and modeling. To quantify this influence, Pearson’s correlation
coefficients r were calculated between the date of sowing and
the DOYP variants, with and without consideration of soil moisture,
as well as between the date of sowing and DOYobs (Table 5).

As expected, DOYobs and the date of sowing are almost linear
correlated for emergence and show high significance. For shooting,
r is moderate with very high significance, while for all later phases
r is low. For heading, all r values are close to zero and not signifi-
cant, while for the two ripening phases they are slightly higher.
In general, correlation between the raw observations is lower than
the correlation of the modeled phases and the observed day of
sowing. Incorporation of soil moisture slightly increases the corre-
lation coefficient.

4.7. Error sources

Volunteered Geographic Information in general are of limited
reliability (Flanagin and Metzger, 2008). Here, for the phenological
observations data set, this concerns especially locational uncer-
tainties, cultivar differences and the lack of information regarding
fertilization and other management practices (see Sections 2.1 and
4.4) which is one source for model uncertainties.

Due to the spatial interpolation of the observations, uncertain-
ties of the used temperatures are unavoidable. The average uncer-
tainty and an approach to balance accuracy and processing time
were discussed in Section 4.1. Other sources for mean tempera-
tures are satellite data, which provide spatially explicit values.
However, these values are only valid under cloud-free conditions.

The resolution of the underlying DEM suppresses small-scale
variations in elevation and thus reduces interpolation accuracies.
The usage of a higher resolution DEM from satellite data e.g. native
the SRTM DEM, WorldDEM (90 m and 12 m resolution, respectively)
re. Negative values indicate accuracy improvement when soil moisture is considered.

Oil. rape Oats Maize Potato Sug. beet

0.22 0.02 �0.01 �0.18 �0.12
0.12 0.00 �0.05 – –

– �0.11 – – –
– �0.01 �0.05 – –
– 0.08 �0.35 – –

0.09 – �0.05 – –
– – – – –

0.88 – – – –
�0.04 – – – –
�0.08 – – – –

– – �0.94 – –
– – 0.04 – –
– – – �0.45 0.14

te of sowing for winter wheat.

eading Milk ripening Yellow ripening

p r p r p

0.04 0.38 0.28 7.1e�7 0.25 2.8e�6
0.03 0.56 0.29 1.9e�7 0.26 1.4e�6

0.05 0.30 0.21 1.3e�4 0.15 4.1e�3
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or DEM derived from airborne laser scanning with resolutions
down to a few centimeters could increase interpolation accuracy,
but due to computational limitations study site size and DEM res-
olution must be balanced.

Further model uncertainties are consequences of the model’s
intended simplicity. A more sophisticated model that includes
parameters like other cardinal temperatures (e.g., upper
thresholds, optimum temperatures), which can be freely obtained
for many WMO-listed weather stations worldwide, could increase
the model accuracy. However, the higher the input data
requirements are, the smaller are the application scenarios for
the model due to different data availability between regions, coun-
tries, phenological observations, etc.

4.8. Comparison with other models

The PHASE model is based on only free and operationally avail-
able Germany-wide information on temperature, phenological
events and elevation in order to create on-demand maps of up-
to-date or past phenological conditions at any location in Germany.
On the one hand, the resulting phenological maps represent spa-
tially explicit interpolation results of a specific and adaptable geo-
metric resolution (here: 1 � 1 km2). This is in contrast to
comparable GDD approaches applied in Germany which aggregate
phenological observation values to reference units like eco-regions
(Siebert and Ewert, 2012) or large-scaled grid cells of 50 � 50 or
100 � 100 km2 (van Bussel et al., 2011). On the other hand, the the-
matic depth of the PHASE interpolation results is superior and
more crop-specific compared to spatially explicit and satellite-
based parameters (e.g. Hird and McDermid, 2009).

Unlike other statistical phenological models, PHASE does not
include features and capabilities which might lead to more accu-
rate predictions. Some statistical phenological models include
species-specific chilling requirements during the period of dor-
mancy (Luedeling et al., 2009). Consideration of chilling require-
ments could further improve modeling accuracies for some
species, since chilling effects are mostly effective for winter crops
but less for summer cultivars.

Furthermore, other models allow the prediction of phenological
responses to climate projections into the future (Schröder et al.,
2014). This is a very useful capability for a large variety of
climate-related sciences, but it is beyond the scope of the PHASE
model. One example is the Promotor Inhibitor Model (PIM;
Schaber and Badeck, 2003) which has recently been applied to
investigate the impact of future climate(s) on tree phenology
(Lange et al., 2016). PIM is a generalized physiology-based model
and fitted on long-term phenological observations, e.g. DWD
observational network. Consequently, PIM can assess and explain
the importance of underlying drivers like temperature in the sense
of chilling requirements or day length which may potentially vary
between phenological phases and species. Once robustly fitted, it
can also be used for comparable climates or species even when
no phenological observations are available. If the underlying mech-
anism – as exhibited in the long-term observational set – changes,
PIM’s transferability can be substantially restricted. PHASE, in con-
trast, uses (geo-) statistics of a single phenological cycle. This
ensures for a single year and phase a better predictive performance
(2–3 days less MAE compared to PIM).

5. Conclusions and outlook

In this article, we presented the geo-statistical model PHASE
which makes the automatic, Germany-wide and spatially explicit
prediction of phenological phases possible. The model uses pub-
licly available input data and is characterized by the following
features:
� PHASE enables an automatic optimization of all critical param-
eters which makes the model independent of user-specific
parametrization. Thus, the model allows the spatial interpola-
tion of any phase for which phenological observations exist.
Each modeling result is characterized by accuracy metrics.

� Only three types of input data are needed including daily pro-
vided point data on temperature and phenological events and
digital elevation model.

� As demonstrated for the example of soil moisture, additional
explaining variables can be integrated in the model to possibly
increase the results’ accuracy.

� The predictions’ geometric resolution is free adaptable. In the
presented model setting, the spatial resolution of the resulting
phenological raster data set is 1 � 1 km. Currently, no publicly
available phenological model of equivalent performance
regarding spatial and thematic resolution as well as processing
time is known.

Although the introduced workflow refers to German data situa-
tion, the approach is, however, transferable to other temperate
regions where a sufficient data base of phenological observations
and daily temperature measurements exist or are continuously
reported. These requirements are fulfilled in some other European
countries, e.g. the Netherlands, Belgium and Great Britain
(Rodriguez-Galiano et al., 2015) and the US (Rosemartin et al.,
2014). Apart from networks driven by state authorities, the
amount of volunteered geographic information including pheno-
logical observations has increased in recent years due to the
improvement in online communication and positional tracking
techniques (Mehdipoor et al., 2015). In addition to human-based
observations, stationary near-surface cameras (phenocams) will
increasingly provide a permanent visual record of phenological
developments (Richardson et al., 2013).

A model transferability is also to be expected to other crop
types like soybeans whose growth and development is influenced
by heat units and by photoperiod (Setiyono et al., 2007), but which
are rarely or almost not cultivated in Central Europe. Depending on
the region-specific availability of relevant open-source input data
sets, the model can be extended or modified accordingly.

The modeling results are of interest for remote sensing applica-
tions, especially for crop classification which has been one of the
key applications for remote sensing data over decades. However,
the number of distinct cultivated crops that can be discriminated
accurately is mostly limited on a few and partly aggregated classes.
Class separation on species level is often hampered by high spec-
tral similarity of closely related species e.g., cereal species like
wheat, rye and barley. Phenological information can work as indi-
cators for the selection of optimal satellite images to achieve more
accurate classification results on species level (Gerstmann et al.,
2016).

A further information gain by the usage of PHASE outputs could
be achieved in mapping of invasive species. Within the study by
Bradley and Mustard (2006), invasive cheatgrass was mapped in
northern Nevada, USA, using phenology as indicator for
classification and for derivation of invasion risk. For this purpose,
Landsat images were selected arbitrary under the knowledge, that
cheatgrass has its highest greenness in mid-May, slightly earlier
than the grass species which are native in northern Nevada
steppes. This arbitrary selection can be assisted and potentially
improved by modeled phenology as provided by PHASE.

Turner et al. (2003) stated, that remote sensing based informa-
tion on plant phenological development are important variables
for mapping of biodiversity and determination of vegetation pat-
terns down to species levels. However, remote sensing methods
provide a less detailed thematic resolution than phenological
information modeled using ground observations. Adapted to the
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specific application, PHASE thus has the potential to improve
results of biodiversity studies using remote sensing data.

In addition, the coupling of up-to-date phenological predictions
with corresponding remotely sensed imagery or simulated times
series opens up opportunities for the monitoring of ecosystem ser-
vices like soil erosion control (Guerra et al., 2014). In doing so, tem-
poral windows and specific reference units like parcels can be
detected where soils are potentially covered by sparse or dense
vegetation, crop residues or are free of coverage, which enables
dynamic soil erosion modeling (Möller et al., 2015).

It is planned to enable public access of operationally produced
modeling results within a WebGIS environment. Therefore, for
time-consuming parts of the PHASE model, like the prediction of
daily temperatures or the optimization of base temperatures
(Section 3.2.1) and accumulated effective temperatures
(Section 3.2.3), appropriate parallelization techniques (Schiele
et al., 2012) are currently tested to enable computational efficient
processing.
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