

Spatio-temporal Modeling And Monitoring Of Extreme Weather Events And Conditions

Markus Möller

Julius Kühn Institute - Federal Research Centre for Cultivated Plants Institute for Strategies and Technology Assessment Kleinmachnow (Germany)

Outline

- The Julius Kühn Institute
- Extreme Weather situation
- Geodata integration approach
 - Phenological Modeling
 - Extreme weather events
- Conclusion

The Julius Kühn Institute

"Securing tomorrow's resources"

What is the JKI?

- ... is the Federal Research Centre for Cultivated Plants in Germany.
- ... was constituted on January 1st, 2008, as the research branch of the German Ministry of Food and Agriculture (BMEL).
- ... is both a research institute and a higher federal authority.

Who was Julius Kühn?

He lived from 1825 till 1910, established and developed the agrarian sciences as part of university education in Germany.

The Julius Kühn Institute

"Securing tomorrow's resources"

Reseach topics

- plant nutrition, agronomy and soil science
- plant genetics, breeding research
- plant protection and plant health

Organization

- 17 specialized institutes & several service units
- federal budget ≈ 91 Million €.
 third-party funds ≈ 8 Million €.
- ≈ 750 permanent posts $\cdot \approx 450$ fixed-term contracts $\cdot \approx 350$ scientists

Extreme Weather in Europe and Germany

Climate change leads to increasing occurrence of extreme weather, which can have an impact on crop yield levels and yield stability.

Phenomena and impacts

- Conditions heat, frost, drought ⇒
 damages to tissue and reproductive
 organs, significant reduction of
 photosynthesis up to irreversible
 tissue damages due to water deficit
- Events hail, heavy rainfall ⇒ root damages from oxygen deficit as a consequence of soil water logging, soil erosion and nutrient leaching

Mäkinen, H. et al. (2018): Sensitivity of European wheat to extreme weather. Field Crops Research 222, 209-217.

Winter Wheat yield variation between 2001 and 2010 [%]

Lüttger, A.B. & Feike, T. (2018):

Development of heat and drought related extreme weather events and their effect of

extreme weather events and their effect on winter wheat yields in Germany *Theoretical* and Applied Climatology 132, 15-29.

Extreme Weather in Europe and Germany

EMRA - Extreme Weather Monitoring and Risk Assessment

EMRA web tool - practical decision support system ...

- ... for farmes and agricultural advisers
- ... enabling a risk assessment of reference units (e.g., parcels) regarding extreme weather

Agricultural crop types and test sites

- Winter Wheat in the district of Uckermark
- Apple in Altes Land region (district of Stade)

Components

- geodata integration
- dynamic risk assessment
- monitoring

Dynamic WI/EI calculation

The impact of extreme weather events/conditions is related to phenological development stages/phases of crops.

Möller, M., Doms, J., Gerstmann, H., Feike, T., 2018. A framework for standardized weather index calculation in Germany. Theoretical and Applied Climatology. URL https://link.springer.com/article/10.1007/s00704-018-2473-x

 $P_{d,h}$ – daily and hourly precipitation $\mid T_d$ – daily mean temperature $\mid DOY^P$ – DOY of begining phenological phases $\mid I^S$ – spectral index $\mid I^T$ – terrain index $\mid S$ – soil data $\mid RU$ – Reference unit $\mid WI_P$ – Weather Index $\mid EI_{P,d}$ – Erosion Index

Volk, M., Möller, M. & Wurbs, D. (2010). A pragmatic approach for soil erosion risk assessment within policy hierarchies. Land Use Policy, 27, 997–1009.

Phenological Modeling: Interpolation of phenological phases

Gerstmann, H., Doktor, D., Gläßer, C. & Möller, M. (2016): PHASE: A geostatistical model for the Kriging-based spatial prediction of crop phenology using public phenological and climatological observations. *Computers and Electronics in Agriculture* 127, 726–738.

Phenological Modeling: Interpolation of phenological phases

Beginning phenological phases (Winter Wheat, 2016)

Phenological Modelling: Crop-specific phenological windows

Winter Wheat in the distric of Uckermark (2016)

Möller, M., Gerstmann, H., Dahms, T.C., Gao, F. & Förster, M. (2017): Coupling of phenological information and simulated vegetation index time series: Limitations and potentials for the assessment and monitoring of soil erosion risk. *CATENA* 150, 192–205.

Phenological Modelling: Crop-specific phenological windows

Winter Wheat in the distric of Uckermark: Shooting periods between 1998 and 2018

Extreme weather events: Principle workflow

Parcel-specific time series of phenological soil cover and precipitation

Extreme weather events: Satellite and precipitation

Germany-wide geodata sets

- MODIS (7th Oct 2016)
 - Terra Surface Reflectance 8-Day L3 Global 250 m SIN Grid V006 (MOD09Q1; © USGS)
 - NDVI/SAVI
 - $250 \times 250 \, \text{m}$
- Precipitation (3rd Oct 2016)
 - highly resolved (5 min) and adjusted radar rain data (RADOLAN, © DWD)
 - aggregated to hours per day exceeding a threshold of $P > 10 \, \mathrm{mm}$
 - 1 × 1 km

Extreme weather events: Parcel-specific soil erosion

Regional geodata

- DEM & soil erodibility
 - 10 × 10 m
 - © Soil survey of Brandenburg (https://lbgr. brandenburg.de)

Extreme weather events: Parcel-specific soil erosion

Parcel DEBBLI0373300339-3901: Winter Wheat in 2016/2017 | 32 ha

Extreme weather events: Parcel-specific soil erosion

Parcel DEBBLI0373300339-3901: *NDVI* and Precipitation Index profile for Winter Wheat in 2016/2017

10 - tiling | 12 - emerging | 15 - shooting | 18 - beginning of ear | 19 - milk ripeness | 21 - yellow ripeness | 24 - harvest

Extreme weather events: Parcel-specific soil erosion

Parcel DEBBLI03733-00339-3901: SPOT 5 image taken on 26th September 2016 (DOY = 269)

Options for action

- detailed parametrization and soil cover detection (bare soil, crop residues, vital vegetation), soil erosion modeling and simulation
- historical and current monitoring
- ⇒ slope length reduction by vegetation strips, no maize cultivation

Summary

Geodata integration

Scale-specific and Germany-wide geodata integration of current and historical geodata is a crucial precondition for the parcel-specific assessment of extreme weather.

- phenological information
- daily weather data
- satellite imagery

Applications

- Parcel-specific localization of historical/up-to-date soil erosion events of high probability
- Weather Index calculation

Möller, M., Doms, J., Gerstmann, H., Feike, T., 2018. A framework for standardized weather index calculation in Germany. Theoretical and Applied Climatology. URL https://link.springer.com/article/10.1007/s00704-018-2473-x

Questions?

Contact Markus Möller · Julius Kühn Institute – Federal Research Centre for Cultivated Plants · Institute for Strategies and Technology Assessment · Stahnsdorfer Damm 81 · 14532 Kleinmachnow (Germany) · Email:

markus.moeller@julius-kuehn.de · URL:

http://emra.julius-kuehn.de